共查询到18条相似文献,搜索用时 62 毫秒
1.
利用定义在[0,1)上的连续Legendre多小波数值求解线性Fredholm积分一微分方程.剁用Legendre多小波逼近理论将积分一微分方程离散化为代数方程组.最后用数值算例与CAS小波理论以及Legendre小波理论比较,结果表明特别是当方程的解是线性函数时,Legendre多小波方法表现出更高的精度和有效性. 相似文献
2.
本文介绍了Legendre小波的性质,并利用它们将线性Fredholm积分-微分方程组转化为代数方程组求解, 得到方程组的系数矩阵相当稀疏, 给计算带来了方便. 最后, 为了说明方法的有效性, 我们给出了一些数值算例并与其它方法进行了比较. 相似文献
3.
建立了求解梁振动方程数值解的移位Legendre小波配置法。利用移位的Legendre多项式,推导出Riemann-Liouville意义下移位Legendre小波函数的一般分数阶积分公式。利用分数积分公式和二维移位Legendre小波配置法,将梁振动方程求解问题转化为代数方程组求解。数值算例表明该方法具有较高的精度。 相似文献
4.
利用定义在[0,1]上的Legendre多小波构造插值基求解第一类Volterra积分方程,主要采用配置法将积分方程离散化为线性方程组。最后利用数值算例验证了结果的有效性。 相似文献
5.
研究Legendre小波方法求解具有一阶导和二阶导类型的线性Fredholm integro-differential型方程,应用Legendre小波逼近法将这2类方程分别化为代数方程求解.实例说明,Legendre小波在解决这2类方程时具可行性和有效性. 相似文献
6.
林伟 《宁夏大学学报(自然科学版)》1996,17(1):81-83
区间小波及其在积分方程中的应用林伟(中山大学数学系,510275,广东广州)作者:林伟,男.1934年生,教授,研究复分析,偏微分方程与小波分析.(责任编辑杨金华责任校对文晓梅)THEINTERVALWAVELETSANDTHEIRAPPLICATI... 相似文献
7.
8.
运用Chebyshev小波配置点法求解Fredholm-Volterra积分方程,建立了Chebyshev小波的算子矩阵,将求解的积分方程转化为矩阵方程,之后再转化为一组代数方程组,从而求出原方程的数值解,这样大大简化了运算过程. 相似文献
9.
利用B样条小波函数数值求解非线性分数阶第2类Fredholm积分方程,将具有紧支集的线性半正交B样条尺度函数和小波函数一起应用于数值求解非线性分数阶第2类Fredholm积分方程中.这种方法将非线性分数阶Fredholm积分方程转化为非线性代数方程组,再通过数值求解方程组得到原方程的数值解,证明了误差边界值,数值算例验证了本方法的有效性和准确性. 相似文献
10.
李松华 《中山大学学报(自然科学版)》2010,49(4)
利用一类三角小波作为基函数Galerkin方法,将一类高阶奇异积分方程离散化,得到的刚度矩阵是一个对称循环矩阵,并由此获得了一个基于FFT和IFFT的快速算法。该算法不但不需要计算刚度矩阵的值,而且还避免了求广义逆矩阵所带来的麻烦。数值算例表明:当积分方程的真实解几乎具有奇性时,该数值方法仍然十分有效。 相似文献
11.
蔡好涛 《甘肃联合大学学报(自然科学版)》2008,22(4)
主要讨论了用Legendre配置方法求解第二类积分方程的数值解问题.首先我们选择Legendre多项式为基底,然后估计了逼近解的收敛性.我们证明了逼近解的收敛阶仍然保持最优.最后用数值例子验证了我们的方法的有效性. 相似文献
12.
利用勒让德小波算法, 解一类常微分方程边值问题, 得到其数值解. 数值实验结果表明, 本方法具有较高的精度, 在科学与工程计算中有重要应用. 相似文献
13.
提出求解四阶常微分方程的Birkhoff配点法.通过构造满足边界条件的Birkhoff插值基函数,得到具有稳定条件数的代数方程组.在数值算例中,通过与一类Legendre 配点法的数值结果进行比较.结果表明:Birkhoff配点法的有效性和高精度. 相似文献
14.
采用快速Fourier配置法求解Symm积分方程.首先,根据配置法求解Symm积分方程离散化得到稠密矩阵.其次,提出相应的矩阵截断策略,将稠密矩阵压缩成稀疏矩阵.最后,求解方程组得到近似解珘un.在保持收敛阶的前提下,大大减少了计算量. 相似文献
15.
研究一类具弱奇性核Volterra积分方程的配置法求解. 利用压缩映射定理证明了该类方程解的存在唯一性, 构造了求解这类方程的配置算法, 并对算法进行误差分析, 数值实验结果验证了理论的正确性. 该数值方法可应用于更一般的非线性Volterra积分方程. 相似文献
16.
针对四阶椭圆型方程,提出了在半直线域上全对角化的有理Legendre谱方法。构造了Sobolev正交的Legendre有理基函数,并导出了相应的全对角化的离散代数方程组。与此同时,微分方程的真解和数值解都表示为Fourier级数形式及其截断形式。数值结果表明了该方法的高效性并保持谱精度。 相似文献
17.
应用首次积分法, 提出一种求解非线性波动方程的分析方法, 并在理论上得到一类Duffing方程精确形式的行波解. 结果表明, 首次积分法对于求Duffing方程的精确解是一种可行方法. 相似文献
18.
张伟斌 《宁夏大学学报(自然科学版)》2007,28(3):221-225
利用Legendre拟谱方法对广义Ginzburg-Landau方程的Dirichlet问题构造了半离散和全离散逼近格式,并对半离散和全离散格式的解给出了误差估计. 相似文献