首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-chip natural assembly of silicon photonic bandgap crystals.   总被引:20,自引:0,他引:20  
Y A Vlasov  X Z Bo  J C Sturm  D J Norris 《Nature》2001,414(6861):289-293
Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.  相似文献   

2.
Hayward RC  Saville DA  Aksay IA 《Nature》2000,404(6773):56-59
The production of materials with micrometre- and submicrometre-scale patterns is of importance in a range of applications, such as photonic materials, high-density magnetic data storage devices, microchip reactors and biosensors. One method of preparing such structures is through the assembly of colloidal particles. Micropatterned colloidal assemblies have been produced with lithographically patterned electrodes or micromoulds. Here we describe a different method that combines the well-known photochemical sensitivity of semiconductors with electric-field-induced assembly to create ordered arrays of micrometre-sized colloidal particles with tunable patterns. We show that light affects the assembly processes, and demonstrate how to produce patterns using electrophoretic deposition in the presence of an ultraviolet (UV) illumination motif. The distribution of current across an indium tin oxide (ITO) electrode can be altered by varying the illumination intensity: during the deposition process, this causes colloidal particles to be swept from darkened areas into lighted regions. Illumination also assists in immobilizing the particles on the electrode surface. Although the details of these processes are not well understood, the patterning effects of the UV light are discussed in terms of alterations in the current density that affects particle assembly on an ITO electrode.  相似文献   

3.
4.
Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics, in which the breakdown of quantum theory would appear as an 'intrinsic' decoherence, mimicking the more familiar environmental decoherence processes. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe(8) molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49?×?10(6); our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ~6?×?10(7), by optimizing the temperature, magnetic field and nuclear isotopic concentrations.  相似文献   

5.
Kobatake S  Takami S  Muto H  Ishikawa T  Irie M 《Nature》2007,446(7137):778-781
The development of actuators based on materials that reversibly change shape and/or size in response to external stimuli has attracted interest for some time. A particularly intriguing possibility is offered by light-responsive materials, which allow remote operation without the need for direct contact to the actuator. The photo-response of these materials is based on the photoisomerization of constituent molecules (typically trans-cis isomerization of azobenzene chromophores), which gives rise to molecular motions and thereby deforms the bulk material. This effect has been used to create light-deformable polymer films and gels, but the response of these systems is relatively slow. Here we report that molecular crystals based on diarylethene chromophores and with sizes ranging from 10 to 100 micrometres exhibit rapid and reversible macroscopic changes in shape and size induced by ultraviolet and visible light. We find that on exposure to ultraviolet light, a single crystal of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene changes from a square shape to a lozenge shape, whereas a rectangular single crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene contracts by about 5-7 per cent. The deformed crystals are thermally stable, and switch back to their original state on irradiation with visible light. We find that our crystals respond in about 25 microseconds (that is, about five orders of magnitude faster than the response time of the azobenzene-based polymer systems) and that they can move microscopic objects, making them promising materials for possible light-driven actuator applications.  相似文献   

6.
Superconductivity in molecular crystals induced by charge injection   总被引:2,自引:0,他引:2  
Schön JH  Kloc C  Batlogg B 《Nature》2000,406(6797):702-704
Progress in the field of superconductivity is often linked to the discovery of new classes of materials, with the layered copper oxides being a particularly impressive example. The superconductors known today include a wide spectrum of materials, ranging in complexity from simple elemental metals, to alloys and binary compounds of metals, to multi-component compounds of metals and chalcogens or metalloids, doped fullerenes and organic charge-transfer salts. Here we present a new class of superconductors: insulating organic molecular crystals that are made metallic through charge injection. The first examples are pentacene, tetracene and anthracene, the last having the highest transition temperature, at 4 K. We anticipate that many other organic molecular crystals can also be made superconducting by this method, which will lead to surprising findings in the vast composition space of molecular crystals.  相似文献   

7.
SiO2 colloidal spheres were synthesized by St-ber method. In order to enhance surface charge of the SiO2 spheres, they were modified with succinic acid. Scanning electron microscope (SEM) shows that the average size of modified SiO2 spheres is 473 nm, and its distribution standard deviation is less than 5%; Fourier-transform infrared spectra (FT-IR) and X-ray photoelectron spectrometer (XPS) results indicate that one end of succinic acid is chemically bonded to the SiO2 spheres through esterification; Zeta potential of the modified SiO2 spheres in water solution is improved from -53.72 to -67.46 mV, and surface charge density of the modified SiO2 spheres is enhanced from 0.19 to 0.94 μC/cm2. SiO2 colloidal crystal was fabricated from aqueous colloidal solution by the vertical deposition method at 40℃ and 60% relative humidity. SEM images show that the sample of SiO2 colloidal crystal is face-centered cubic (fcc) structure with its (111) planes parallel to the substrate. Transmission measurement shows the existence of photonic band gap at 1047 nm.  相似文献   

8.
9.
10.
11.
金属有机骨架材料MIL-101的合成及CO吸附性能   总被引:1,自引:0,他引:1  
采用水热法合成金属有机骨架材料MIL-101,并利用X线衍射(XRD)、低温N2吸附等测试手段对合成的材料进行表征。结果表明:制备的MIL-101的BET(Brunauer-Emmett-Teller)比表面积达到3 142 m2/g,孔容为1.78cm3/g。根据77 K下N2吸附等温线数据,采用巨正则蒙特卡洛法分析MIL-101的孔径分布,其分析结果与文献所报道的数据吻合。考察了CO、N2混合体系在MIL-101上的吸附性能,实验结果表明:MIL-101结构中不饱和金属Cr3+提供的活性位能从混合气体中高效吸附分离CO,而且对CO的吸附容量达到45.0 cm3/g(298 K,0.1 MPa),对CO的吸附容量约是NA吸附剂的2倍。  相似文献   

12.
大豆、小麦根系分泌物中低分子量有机酸分析方法   总被引:1,自引:0,他引:1  
针对植物根系分泌低分子量有机酸是活化土壤难溶性矿物质养分的重要物质,对土壤性质及土壤物质转化有重要影响等问题,采用试验方法,根据各种低分子量有机酸的理化性质,建立了低分子量有机酸反相高效液相色谱测定方法.检测条件:Waters Nova-pak 5μ C18 150mm×4.6mm液谱柱,流动相为乙腈/水(磷酸调pH=3)=10/90(V/V),检测波长215nm.结果表明,方法灵敏可靠,样品加标回收率为88.2~101.9%,标准偏差0.0095~0.0236,变异系数为1.78~4.77%.  相似文献   

13.
Type III secretion systems (TTSSs) are multi-protein macromolecular 'machines' that have a central function in the virulence of many Gram-negative pathogens by directly mediating the secretion and translocation of bacterial proteins (termed effectors) into the cytoplasm of eukaryotic cells. Most of the 20 unique structural components constituting this secretion apparatus are highly conserved among animal and plant pathogens and are also evolutionarily related to proteins in the flagellar-specific export system. Recent electron microscopy experiments have revealed the gross 'needle-shaped' morphology of the TTSS, yet a detailed understanding of the structural characteristics and organization of these protein components within the bacterial membranes is lacking. Here we report the 1.8-A crystal structure of EscJ from enteropathogenic Escherichia coli (EPEC), a member of the YscJ/PrgK family whose oligomerization represents one of the earliest events in TTSS assembly. Crystal packing analysis and molecular modelling indicate that EscJ could form a large 24-subunit 'ring' superstructure with extensive grooves, ridges and electrostatic features. Electron microscopy, labelling and mass spectrometry studies on the orthologous Salmonella typhimurium PrgK within the context of the assembled TTSS support the stoichiometry, membrane association and surface accessibility of the modelled ring. We propose that the YscJ/PrgK protein family functions as an essential molecular platform for TTSS assembly.  相似文献   

14.
有机小分子及金属有机配合物电子传输材料的研究进展   总被引:4,自引:0,他引:4  
概述了有机小分子及金属有机配合物电子传输材料的研究进展,对由小分子电子传输材料构成的有机电致发光器件的发光性能、发光效率等方面进行了比较,并对小分子材料的研究前景进行了展望.  相似文献   

15.
Coe S  Woo WK  Bawendi M  Bulović V 《Nature》2002,420(6917):800-803
The integration of organic and inorganic materials at the nanometre scale into hybrid optoelectronic structures enables active devices that combine the diversity of organic materials with the high-performance electronic and optical properties of inorganic nanocrystals. The optimization of such hybrid devices ultimately depends upon the precise positioning of the functionally distinct materials. Previous studies have already emphasized that this is a challenge, owing to the lack of well-developed nanometre-scale fabrication techniques. Here we demonstrate a hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs). To isolate the luminescence processes from charge conduction, we fabricate a quantum-dot LED (QD-LED) that contains only a single monolayer of QDs, sandwiched between two organic thin films. This is achieved by a method that uses material phase segregation between the QD aliphatic capping groups and the aromatic organic materials. In our devices, where QDs function exclusively as lumophores, we observe a 25-fold improvement in luminescence efficiency (1.6 cd A(-1) at 2,000 cd m(-2)) over the best previous QD-LED results. The reproducibility and precision of our phase-segregation approach suggests that this technique could be widely applicable to the fabrication of other hybrid organic/inorganic devices.  相似文献   

16.
Low-voltage organic transistors with an amorphous molecular gate dielectric   总被引:1,自引:0,他引:1  
Organic thin film transistors (TFTs) are of interest for a variety of large-area electronic applications, such as displays, sensors and electronic barcodes. One of the key problems with existing organic TFTs is their large operating voltage, which often exceeds 20 V. This is due to poor capacitive coupling through relatively thick gate dielectric layers: these dielectrics are usually either inorganic oxides or nitrides, or insulating polymers, and are often thicker than 100 nm to minimize gate leakage currents. Here we demonstrate a manufacturing process for TFTs with a 2.5-nm-thick molecular self-assembled monolayer (SAM) gate dielectric and a high-mobility organic semiconductor (pentacene). These TFTs operate with supply voltages of less than 2 V, yet have gate currents that are lower than those of advanced silicon field-effect transistors with SiO2 dielectrics. These results should therefore increase the prospects of using organic TFTs in low-power applications (such as portable devices). Moreover, molecular SAMs may even be of interest for advanced silicon transistors where the continued reduction in dielectric thickness leads to ever greater gate leakage and power dissipation.  相似文献   

17.
基于一维派尔斯-哈伯德模型,采用数值精确对角化和约束路径量子蒙特卡罗数值方法,研究有机分子晶体TTF-CA(tetrathiafulvalene-p-chloranil)的多铁性特征.当填充电子数与格点数相等时(即半填充),两种方法的计算结果表明,在一定的参数空间体系存在反铁磁和铁电极化共存的多铁状态.在弱电子关联区间,数值计算结果与哈特利-福克平均场得到的结果一致.但在中等至强电子关联区间,数值结果预言,多铁性产生的电声子相互作用强度远低于平均场给出的结果.当填充电子数略低于格点数时,体系存在铁磁与铁电极化共存的状态.研究结果有助于理解和设计新型有机多铁性材料.  相似文献   

18.
由Schaaffs理论得到有机液声速温度系数、压力系数及非线性声参量的表达式。结果表明,上述声参量与液体分子半径密切联系。在常温常压下,有机液声速系数c/T_p<0,(c/p)_T>0,非线性声参量B/A≥8。  相似文献   

19.
不同分子量聚合物溶液在多孔介质中的渗流特性研究   总被引:1,自引:0,他引:1  
通过岩心流动实验,探讨了部分水解聚丙烯酰胺溶液(HPAM)在多孔介质中流动时聚合物分子量和孔隙特征参数对流动行为的影响,得到了一组反映流动参数变化规律的关系曲线。结果表明,在消除黏度效应条件下,高分子量聚合物比低分子量聚合物降低水相渗透率的能力强;聚合物分子量越高,多孔介质渗透率越低,阻力系数和残余阻力系数越大,聚合物越早突破多孔介质;当平均孔隙半径与聚合物分子尺寸之比大于4时,多孔介质的孔隙通道一般不会发生聚合物堵塞.  相似文献   

20.
以有机分子β环糊精(β-CD)为模板剂,采用水热法制备了TiO2纳米粉体.利用XRD、BET 等手段对样品进行了测试.研究了模板剂添加量对粉体晶型、粒径、光催化性能的影响以及模板剂脱除方式对粉体比表面积的影响.结果表明,当β-CD/TiO2质量分数为60%时,其粒径最小为3.78nm,粉体具有较好的光催化效果;TiO2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号