共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
利用代数数论理论和同余理论方法研究不定方程x~2+16384=y~(15)的整数解问题,并证明了不定方程x~2+16384=y~(15)仅有整数解(x,y)=(±128,2). 相似文献
3.
4.
用代数数论方法证明了丢番图方程x2 - 13=4y3仅有整数解(x,y)=(±3,-1)以及丢番图方程x2 +2=y3仅有整数解(x,y)=(±5,3). 相似文献
5.
对于部分无平方因子整数D,其二次域Q(D~(1/2))是Euclid域,那么它所对应的Euclid整环中算术基本定理成立。利用二次Euclid域的整除理论讨论了不定方程x~2±3=4y5,x,y∈Z的整数解情况,并得到了其所有整数解,即证明了不定方程x~2+3=4y~5,x,y∈Z仅有整数解(x,y)=(±1,1),而不定方程x~2-3=4y~5,x,y∈Z无整数解。 相似文献
6.
关于不定方程x^3+1=Dy^2 总被引:24,自引:0,他引:24
倪谷炎 《哈尔滨师范大学自然科学学报》1999,15(3):13-15
对不定方程x^3+1=Dy^2,当0〈D〈100,不含平方因子,且被6k+1形的素数整除时,本文得到仅当D=7,14,35,38,57,65,86时有非平凡整数解,并证明了D=91时方程无非平凡解。 相似文献
7.
8.
关于不定方程x~3+1=86y~2 总被引:2,自引:0,他引:2
关于不定方程x3+1=86y2是一个未解决的方程,利用递归数列,同余式以及Pell方程的解的性质以及maple的小程序等方法,证明了不定方程x3+1=86y2,仅有整数解(x,y)=(-1,0),(7,±2)。 相似文献
9.
10.
11.
12.
关于Diophantine方程x~3+1=py~2 总被引:2,自引:0,他引:2
利用同余理论,得出了丢番图方程x 3+1=py2无正整数解的一个充分条件.设p是奇素数,证明了:当p=3(24k+19)(24k+20)+1,其中k是非负整数,则方程x 3+1=py2无正整数解. 相似文献
13.
14.
设D是无平方因子且不能被3或6l+1之型素数整除的正整数,用初等方法讨论了Diophantine方程x 3+113=Dy2整数解的情况,并且给出x<104时方程x3+113=Dy2的所有整数解. 相似文献
15.
利用递归数列、同余及Pell方程解的性质证明了丢番图方程x 3+1=114y2仅有整数解(-1,0). 相似文献
16.
利用递归序列,同余式证明了丢番图方程x 3+1=37y2,仅有整数解(x,y)=(-1,0),(11,±6). 相似文献
17.
利用二次剩余理论,证明了Diophantine方程(m+n)2=m+n!仅有正整数解(m,n)=(1,4). 相似文献