首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-seale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indirates that comprehensive integration and analysis of public large-seale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.  相似文献   

2.
后基因组时代的显著特点是大规模基因组和蛋白质组实验平台所产生的大量高通量数据,整合并利用基因组和蛋白组信息成为这一时代的主要挑战之一. 因此,基因-基因相互作用将有助于理解细胞内基因之间的相互作用以及信号传导通路研究提供有价值的参考. 为预测酵母基因组中基因-基因相互作用,我们利用高通量数据中的蛋白-蛋白相互作用、遗传表型数据、基因微阵列表达数据以及功能基因注释数据等来分析酵母中的基因-基因相互作用. 本文建立的预测方法为在系统水平上理解酵母基因组中的基因功能提供了依据,也为揭示酵母基因组中的基因-基因相互作用网络奠定理论基础.  相似文献   

3.
The protein-protein interaction map of Helicobacter pylori   总被引:33,自引:0,他引:33  
With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function. As elementary constituents of cellular protein complexes and pathways, protein-protein interactions are key determinants of protein function. Here we have built a large-scale protein-protein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single protein-protein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.  相似文献   

4.
Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.  相似文献   

5.
生物体内的蛋白质分子常常通过与其他蛋白质分子发生相互作用来发挥其生物功能.因此,研究蛋白质-蛋白质相互作用(protein-protein interaction,PPI)对于阐明蛋白质分子的生物功能以及分子作用机理具有重要的意义.主要介绍基于生物物理和生物化学原理的检测蛋白质-蛋白质相互作用的实验研究方法,并对发展趋...  相似文献   

6.
Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.  相似文献   

7.
张锦雄  钟诚 《广西科学》2022,29(2):221-240
蛋白质相互作用网络中的模块化结构通常对应于蛋白质复合物或者蛋白质功能模块。基于蛋白质相互作用网络预测蛋白质复合物和功能模块不仅有助于理解生命有机体的细胞生物过程,而且可为探讨疾病的发生、发展和治疗以及合理的药物开发提供重要的基础。本文通过回顾近二十年来基于蛋白质相互作用网络的蛋白质复合物和功能模块预测算法研究的发展历程,按照静态蛋白质相互作用网络(SPIN)和动态蛋白质相互作用网络(DPIN)两个方向分别梳理预测算法所涉及的方法和技术,同时归纳常用的数据集并分析所面临的问题,为进一步研究提供有价值的参考。  相似文献   

8.
9.
The interaction strength between 2 proteins is not constant but variable under different conditions. For a given biological process, identification of protein-protein interactions (PPIs) undergoing dynamic change in interaction strength is highly valuable but never achieved before. In this work, we presented a computational approach to identify changed PPIs (cPPIs) on a global scale by analyzing the coexpression level of genes encoding the interacting protein pairs. This approach stemmed from the biological...  相似文献   

10.
11.
介绍了蛋白质与蛋白质相互作用的研究方法及进展,包括已经应用的标准技术、物理学方法、最新进展及其他方法。利用蛋白质间相互作用为工具,通过合成可调控转录系统来调整生物系统,可实现对基因功能的微调。  相似文献   

12.
Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organization, function and dynamics of a biological system. In order to identify functional neighbor- hoods based on network topology, many network cluster identification algorithms have been devel- oped. However, each algorithm might dissect a network from a different aspect and may provide dif- ferent insight on the network partition. In order to objectively evaluate the performance of four com- monly used cluster detection algorithms: molecular complex detection (MCODE), NetworkBlast, shortest-distance clustering (SDC) and Girvan-Newman (G-N) algorithm, we compared the biological coherence of the network clusters found by these algorithms through a uniform evaluation framework. Each algorithm was utilized to find network clusters in two different protein-protein interaction net- works with various parameters. Comparison of the resulting network clusters indicates that clusters found by MCODE and SDC are of higher biological coherence than those by NetworkBlast and G-N algorithm.  相似文献   

13.
14.
针对蛋白质相互作用(protein-protein interaction,PPI)网络中存在大量噪声,以及现有关键蛋白识别方法的挖掘效率和预测准确率不高等问题,提出一种基于复合物信息和亚细胞定位信息(united protein complexes and subcellular locallizations,PCSL)来识别关键蛋白质。首先,整合PPI网络的拓扑属性、生物属性和空间属性构建加权网络,以降低PPI网络中噪声的影响,达到提升PPI网络的可靠性的目的;其次,根据复合物信息和空间信息,设计一种衡量蛋白质关键性的度量,从多维角度强化关键蛋白质在PPI中的重要程度;最后,利用基于PPI网络拓扑特性的寻优算法,设计一种新的试探策略,提升挖掘关键蛋白质的效率。PCSL方法应用在DIP(database of interacting protein)数据集上进行验证。实验结果表明,与其他10种关键蛋白质识别方法相比较,该方法具有较好的识别性能,能够识别更多的关键蛋白质。  相似文献   

15.
16.
In apparently scale-free protein-protein interaction networks, or 'interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the 'hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: 'party' hubs, which interact with most of their partners simultaneously, and 'date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes--or modules--to each other, whereas party hubs function inside modules.  相似文献   

17.
蛋白质是所有生命活动的载体,它们之间的相互作用在生命活动中起着至关重要的作用.该文介绍了原有的用于预测蛋白质相互作用的共鸣识别模型,并对该模型运用小波变换进行改进,提出了改进后的共鸣识别模型.该模型的最大特点在于直接通过蛋白质的一级结构预测蛋白质之间的相互作用,改进后的模型较原模型更加适合于蛋白质相互作用的预测.运用改进的共鸣识别模型进行了数值试验,取得了较好的预测效果.  相似文献   

18.
From genomics to proteomics   总被引:71,自引:0,他引:71  
Tyers M  Mann M 《Nature》2003,422(6928):193-197
Proteomics is the study of the function of all expressed proteins. Tremendous progress has been made in the past few years in generating large-scale data sets for protein-protein interactions, organelle composition, protein activity patterns and protein profiles in cancer patients. But further technological improvements, organization of international proteomics projects and open access to results are needed for proteomics to fulfil its potential.  相似文献   

19.
针对蛋白质相互作用的预测问题,提出一种以余弦核和线性差值累加核为基核的对偶混合核函数SVM的蛋白质相互作用预测方法.该方法充分考虑了蛋白质的结构域特征,同时根据蛋白质相互作用数据应具有顺序无关的特点,将"对偶"思想引入SVM核函数中.对两个真实的蛋白质相互作用数据集Yeast PPI和Human PPI的测试结果表明,提出的方法与其它方法相比能够有效地提高蛋白质相互作用预测的准确率.  相似文献   

20.
 神经科学和神经工程研究需要研究大脑神经元的电活动情况,以了解大脑产生、传输和处理信息的机制。植入式神经微电极作为一种传感器件,是时间分辨率最高的神经电活动传感手段之一。介绍了国内外几种主要的植入式硅基神经微电极的结构特点、制备方法和性能特点。分析表明,未来通过不断结构优化和改性修饰,特别是在高通量的神经记录方面,通过与同样基于硅材料的电路的集成,硅神经微电极能够进一步提高生物相容性,解决大规模的电极通道体内外传输与连接问题,实现对神经元的在体大规模长时间记录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号