首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A Ashworth  S Rastan  R Lovell-Badge  G Kay 《Nature》1991,351(6325):406-408
Only about 1% of human XO conceptuses survive to birth and these usually have the characteristics of Turner's syndrome, with a complex and variable phenotype including short stature, gonadal dysgenesis and anatomical defects. Both the embryonic lethality and Turner's syndrome are thought to be due to monosomy for a gene or genes common to the X and Y chromosomes. These genes would be expected to be expressed in females from both active and inactive X chromosomes to ensure correct dosage of gene product. Two genes with these properties are ZFX and RPS4X, both of which have been proposed to play a role in Turner's syndrome. In contrast to humans, mice that are XO are viable with no prenatal lethality (P. Burgoyne, personal communication) and are anatomically normal and fertile. We have devised a system to analyse whether specific genes on the mouse X chromosome are inactivated, and demonstrate that both Zfx and Rps4X undergo normal X-inactivation in mice. Thus the relative viability of XO mice compared to XO humans may be explained by differences between the two species in the way that dosage compensation of specific genes is achieved.  相似文献   

3.
Homologous expressed genes in the human sex chromosome pairing region   总被引:4,自引:0,他引:4  
The human sex chromosomes share a pair of homologous genes which independently encode a cell-surface antigen defined by the monoclonal antibody 12E7 (refs 1, 2; see refs 3, 4 for review). The X-located homologue, MIC2X, escapes X-inactivation and the equivalent Y-located locus, MIC2Y, was one of the first genes shown to reside on a mammalian Y chromosome. By using a bacterial expression system we have previously cloned a complementary DNA sequence corresponding to a MIC2 gene and have used this probe to show that the MIC2X and MIC2Y loci are closely related, if not identical. Here we report the use of the cloned probe to confirm the localization of the MIC2X locus to the region Xpter-Xp22.32 (ref. 7) and demonstrate, for the first time, that the MIC2Y locus is located on the short arm of the Y chromosome in the distal region Ypter-Yp11.2. The MIC2 sequences and the sequences described in the accompanying papers by Cooke et al. and Simmler et al. are the first which have been shown to be shared by the sex chromosomes in the pairing region.  相似文献   

4.
P Koopman  J Gubbay  J Collignon  R Lovell-Badge 《Nature》1989,342(6252):940-942
The Y chromosome determines maleness in mammals. A Y chromosome-linked gene diverts the indifferent embryonic gonad from the default ovarian pathway in favour of testis differentiation, initiating male development. Study of this basic developmental switch requires the isolation of the testis-determining gene, termed TDF in humans and Tdy in mice. ZFY, a candidate gene for TDF, potentially encodes a zinc-finger protein, and has two Y-linked homologues, Zfy-1 and Zfy-2, in mice. Although ZFY, Zfy-1 and Zfy-2 seem to map to the sex-determining regions of the human and mouse Y chromosomes, there is no direct evidence that these genes are involved in testis determination. We report here that Zfy-1 but not Zfy-2 is expressed in differentiating embryonic mouse testes. Neither gene, however, is expressed in We/We mutant embryonic testes which lack germ cells. These observations exclude both Zfy-1 and Zfy-2 as candidates for the mouse testis-determining gene.  相似文献   

5.
The mammalian sex chromosomes are thought to be related to each other by sharing a common origin. That is, the X and Y chromosomes originally evolved from a pair of chromosomes that only differed at the locus determining sexual differentiation. For example, this evolutionary relationship is reflected during meiosis in chromosomal pairing between the tip of the human X chromosome short arm and the Y chromosome which presumably implies sequence homology. However, compelling genetic evidence for functional homology between the mammalian X and Y chromosome is lacking. We describe here the localization of a gene to the tip of the short arm of the human X chromosome and evidence for a related gene on the Y chromosome.  相似文献   

6.
从人胎脑构建的cDNA文库中,通过大规模测序筛选的方法获得一条新基因,该基因蛋白序列含有1个环指(RING finger)基序及2个进核信号(nuclear localization signal NLS)序列,钭此基因命名为RNF20(RING Finger 20),用放射杂交细胞系(Radial hybrid RH)方法定位此基因在人染色体的9q22上,Northern杂交表明,其mRNA在睾丸组织中高表达,用小鼠睾丸做原位杂交表明,小鼠的同源基因在精原细胞及初级精母细胞中高表达,未成年小鼠睾丸中的精原细胞没有发达,提示RNF20可能参与精子发生的调控作用。  相似文献   

7.
A gene mapping to the sex-determining region of the mouse Y chromosome is deleted in a line of XY female mice mutant for Tdy, and is expressed at a stage during male gonadal development consistent with its having a role in testis determination. This gene is a member of a new family of at least five mouse genes, related by an amino-acid motif showing homology to other known or putative DNA-binding domains.  相似文献   

8.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.  相似文献   

9.
M J Mitchell  D R Woods  P K Tucker  J S Opp  C E Bishop 《Nature》1991,354(6353):483-486
The Sxr (sex-reversed) region, a fragment of the Y chromosome short arm, can cause chromosomally female XXSxr or XSxrO mice to develop as sterile males. The original Sxr region, termed Sxra, encodes: Tdy, the primary sex-determining gene; Hya, the controlling or structural locus for the minor transplantation antigen H-Y; gene(s) controlling the expression of the serologically detected male antigen (SDMA); Spy, a gene(s) required for the survival and proliferation of A spermatogonia during spermatogenesis; Zfy-1/Zfy-2, zinc-finger-containing genes of unknown function; and Sry, which is probably identical to Tdy. A deletion variant of Sxra, termed Sxrb, which lacks Hya, SDMA expression, Spy and some Zfy-2 sequences, makes positional cloning of these genes possible. We report here the isolation of a new testis-specific gene, Sby, mapping to the DNA deleted from the Sxrb region (the delta Sxrb interval). Sby has extensive homology to the X-linked human ubiquitin-activating enzyme E1. The critical role of this enzyme in nuclear DNA replication together with the testis-specific expression of Sby suggests Sby as a candidate for the spermatogenic gene Spy.  相似文献   

10.
In mammals, testis determination is under the control of the testis-determining factor borne by the Y chromosome. SRY, a gene cloned from the sex-determining region of the human Y chromosome, has been equated with the testis-determining factor in man and mouse. We have used a human SRY probe to identify and clone related genes from the Y chromosome of two marsupial species. Comparisons of eutherian and metatherian Y-located SRY sequences suggest rapid evolution of these genes, especially outside the region encoding the DNA-binding HMG box. The SRY homologues, together with the mouse Ube1y homologues, are the first genes to be identified on the marsupial Y chromosome.  相似文献   

11.
Variation in regulation of steroid sulphatase locus in mammals   总被引:1,自引:0,他引:1  
M Crocker  I Craig 《Nature》1983,303(5919):721-722
Inactivation (lyonization) of one of the two copies of X-linked genes occurs in female mammals, thereby reducing the number of active copies to that of the male. It has been suggested that genes subject to lyonization would be expected to be preserved as a linkage group during mammalian evolution. A short region of the human X chromosome containing several genes, including that necessary for the expression of steroid sulphatase (STS), is exceptional in that it apparently escapes X-inactivation. As it is not apparent why the linkage of genes not subject to X-inactivation should be conserved, we have examined the expression of the STS gene in mice (it has been shown recently that this gene is X-linked). Enzyme levels were determined in normal males and females and in the progeny of crosses in which the sex reversing factor, Sxr, was segregating to produce XX males. We report here that in contrast to the situation in humans, the STS gene in mice is subject to the normal pattern of X-inactivation.  相似文献   

12.
Carrel L  Willard HF 《Nature》2005,434(7031):400-404
In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.  相似文献   

13.
D C Page  L G Brown  A de la Chapelle 《Nature》1987,328(6129):437-440
In most human 'XX males', DNA sequences normally found on Yp, the short arm of the Y chromosome, are present on Xp, the short arm of the X chromosome. To establish whether this transfer involves a terminal portion of Yp, and whether a terminal portion of Xp is lost in the process, we followed the inheritance of pseudoautosomal restriction fragment length polymorphisms in two XX-male families. One XX male apparently inherited the entire pseudoautosomal region of his father's Y chromosome and no part of the pseudoautosomal region of his father's X chromosome. The second XX male also inherited the entire pseudoautosomal region of his father's Y, but in addition inherited a proximal portion of the pseudoautosomal region of his father's X. These findings argue that XX males result from the transfer of a terminal portion of Yp onto Xp in exchange for a terminal portion of Xp (ref. 7). This implies that the testis-determining factor gene (TDF) maps distally in the strictly sex-linked portion of Yp, near the pseudoautosomal domain. The XX males described here appear to result from single (and, at least in the second case, unequal) crossovers proximal to the pseudoautosomal region on Yp and proximal to or within the pseudoautosomal region on Xp.  相似文献   

14.
15.
R J J?ger  M Anvret  K Hall  G Scherer 《Nature》1990,348(6300):452-454
The primary decision about male or female sexual development of the human embryo depends on the presence of the Y chromosome, more specifically on a gene on the Y chromosome encoding a testis-determining factor, TDF. The human sex-determining region has been delimited to a 35-kilobase interval near the Y pseudoautosomal boundary. In this region there is a candidate gene for TDF, termed SRY, which is conserved and specific to the Y chromosome in all mammals tested. The corresponding gene from the mouse Y chromosome is deleted in a line of XY female mutant mice, and is expressed at the expected stage during male gonadal development. We have now identified a mutation in SRY in one out of 12 sex-inversed XY females with gonadal dysgenesis who do not lack large segments of the short arm of the Y chromosome. The four-nucleotide deletion occurs in a sequence of SRY encoding a conserved DNA-binding motif and results in a frame shift presumably leading to a non-functional protein. The mutation occurred de novo, because the father of the sporadic XY female that bears it has the normal sequence at the corresponding position. These results provide strong evidence for SRY being TDF.  相似文献   

16.
Male development of chromosomally female mice transgenic for Sry   总被引:117,自引:0,他引:117  
The initiation of male development in mammals requires one or more genes on the Y chromosome. A recently isolated gene, termed SRY in humans and Sry in mouse, has many of the genetic and biological properties expected of a Y-located testis-determining gene. It is now shown that Sry on a 14-kilobase genomic DNA fragment is sufficient to induce testis differentiation and subsequent male development when introduced into chromosomally female mouse embryos.  相似文献   

17.
目的精子发生是一个包括有丝分裂和减数分裂的精细调控过程,这一过程是从精原干细胞开始在雄性睾丸的曲细精管中完成的,由哺乳动物雌雄性比例接近1∶1这一现象可以推知:受精时带X基因的精子和带Y基因的精子比率应该是1∶1,但事实上精子发生的过程中,分化出来的X、Y精子的比例是否也为1∶1并不清楚,因为精子发生过程中并不是所有细胞都能最终形成精子,然而要研究雌雄出生比率就需要先研究精子本身是否严格地按照1∶1形成,因此本实验通过建立快速可靠原位PCR技术平台为进一步研究精子发生的调控过程提供支持。步骤用HSL基因优化荧光原位PCR实验方案,包括蛋白酶K作用时间和浓度,原位PCR前先对精子进行解聚,再用SRY基因对精子进行原位PCR鉴定。结果在荧光显微镜下可清楚地看到精子头部的荧光信号,头部有绿色荧光信号的精子为带有SRY基因的Y染色体精子(Y精子),实验检测到昆明小鼠精子共493个,有信号的共273个,X∶Y=55.37%,经卡方检验,X精子与Y精子的实验结果趋近于1∶1。结论可利用荧光原位PCR技术在单细胞水平快速鉴定精子"性别",理论上可用于任何细胞的任何基因的鉴定。  相似文献   

18.
The mammalian Y chromosome encodes a testis-determining factor (termed TDF in the human), a master regulator of sex differentiation. Embryos with a Y chromosome develop testes and become males whereas embryos lacking a Y chromosome develop ovaries and become females. Expression of H-Y, a minor histocompatibility antigen, may also be controlled by a gene on the Y chromosome, and it has been proposed that this antigen is the testis-determining factor. We have tested the postulated identity of H-Y and TDF in the human. H-Y typing with T cells was carried out on a series of sex-reversed humans (XX males and XY females), each shown by DNA hybridization to carry part but not all of the Y chromosome. This deletion analysis maps the gene for H-Y to the long arm or centromeric region of the human Y chromosome, far from the TDF locus, which maps to the distal short arm.  相似文献   

19.
D C Page  M E Harper  J Love  D Botstein 《Nature》1984,311(5982):119-123
DXYS1, a site showing greater than 99% DNA sequence homology between the human X and Y chromosomes, maps to the X long arm and to the Y short arm. In great apes, sequences homologous to DXYS1 are found only on the X chromosome. These findings suggest an X-Y transposition during human evolution.  相似文献   

20.
The development of a eutherian mammal as a male is a consequence of testis formation in the embryo, which is thought to be initiated by a gene on the Y chromosome. In the absence of this gene, ovaries are formed and female characteristics develop. Sex determination therefore hinges on the action of this testis-determining gene, known as Tdy in mice and TDF in humans. In the past, several genes proposed as candidates for Tdy/TDF have subsequently been dismissed on the grounds of inappropriate location or expression. We have recently described a candidate for Tdy, which maps to the minimum sex-determining region of the mouse Y chromosome. To examine further the involvement of this gene, Sry, in testis development, we have studied its expression in detail. Fetal expression of Sry is limited to the period in which testes begin to form. This expression is confined to gonadal tissue and does not require the presence of germ cells. Our observations strongly support a primary role for Sry in mouse sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号