首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于粗糙集与支持向量机的分类算法   总被引:3,自引:1,他引:3  
针对高维大样本环境下支持向量机训练算法面临界的耗时增大与维数灾问题,将序列最小优化算法(SMO)与粗糙集(RS)的数据处理功能相结合,提出一种新的基于粗糙集与支持向量机的分类算法RS.SMO.该算法依据属性的重要性对数据集作属性约简,用粗糙边界集法生成类边界集作为SMO的训练子集,使训练集比原始训练集的维数与规模都有一定程度的减少,可构造出具有较好时空性能的算法.实验结果表明,RS-SMO算法能实现结构风险最小化,且性能优于SMO算法.  相似文献   

2.
基于粗糙集的支持向量回归机混合算法   总被引:1,自引:0,他引:1  
利用粗糙集(RS)对不精确数据的处理能力,生成分类数据的边界集,替代原始样本作为训练集,减少训练集与获取的支持向量的数量,然后使用支持向量机的最小序列优化(SMO)算法改进回归学习机的性能.将粗糙集与SMO回归算法结合提出一种混合函数回归算法RS-SMO-RA.在常用SMO回归算法SMO-RA基础上,扩增一段简短的生成边界样本的算法程序.仿真结果表明,算法RS-SMO-RA的效率更高,且能够改进学习结果的性能.  相似文献   

3.
分类问题是机器学习领域的重要研究方向之一。支持向量机是一种基于结构风险最小化的学习机器,在解决分类问题上有着出色的效果。但基于支持向量机的分类器在处理不平衡样本时,对少类样本分类准确率偏低。诸多研究在对此问题做分析时往往把主要原因归结为各类样本间数量上的不平衡,而没有充分考虑样本点在特征空间上的分布情况。针对此问题做出原因分析,并给出结论:样本的不平衡性主要是由特征空间下各类样本的分布所决定的,而和数量上的不平衡关系较小。通过实验验证结论的科学有效性。  相似文献   

4.
支持向量机是建立在统计学习理论基础上的一种新的模式识别技术.本文首先采用肤色检测技术获得图像中可能存在人脸的区域,然后采用基于SVM的检测方法在可能存在人脸的区域进行检测.试验证明,本文提出的人脸检测方法是合理的,具有一定的实用价值.  相似文献   

5.
基于支持向量机的网络流量异常检测   总被引:3,自引:0,他引:3  
提出了一种基于支持向量机的网络流量异常检测方法.分析了支持向量机的基本原理,结合网络流量异常检测的特点,讨论了异常检测的特征选择问题;提出了网络流量对称性、TCP报文SYN和SYN/ACK对称性以及协议分布等具有鲁棒性的特征参数,描述了数据的预处理方法.测试结果表明,所选特征参数可有效地检测网络攻击导致的流量异常变化,说明基于支持向量机的检测方法具有较好的泛化能力.  相似文献   

6.
针对传统元信息分类方法的准确率不能满足主动P2P网络监测模型要求的问题,提出了一种基于改进支持向量机算法的元信息分类方法.该方法首先通过在加权最小二乘支持向量机的基础上加入对数据偏斜的处理,解决了元信息分类时关键词特征稀疏和样本高度不均衡问题,在对元信息文件名进行分词时,加入了词条之间的组合关系处理,在进行特征向量表示时,加入了对词条权值和语义属性的处理,最后使用基于粗糙集的属性规约方法进行特征向量选择,有效地降低了特征向量维度.实验结果表明,与传统方法相比,所提方法在进行元信息分类时能够大幅度提高分类准确率,准确率可达到97.8%,完全能够满足主动P2P网络监测模型的要求.  相似文献   

7.
基于粗糙集优化支持向量机的泥石流危险度预测模型   总被引:2,自引:0,他引:2  
为准确预测泥石流危险度,提出了基于粗糙集理论(RS)的粒子群算法(PSO)优化支持向量机(SVM)模型。首先离散化泥石流样本数据形成初始决策表,利用粗糙集理论对10个泥石流危险度影响指标进行属性约简,将约简后的泥石流指标数据归一化处理作为支持向量机的学习样本,通过粒子群算法寻优获得最佳支持向量机模型参数,最终建立基于粗糙集的泥石流危险度预测的优化支持向量机模型。并将构建的RS-PSO-SVM模型用于对测试样本的预测,结果表明:在相同训练样本的条件下,RS-PSO-SVM模型、PSO-SVM模型及RS-PSO-BP模型三者的预测准确率分别为:87.5%,87.5%,75%,说明RS-PSO-SVM模型和PSO-SVM模型具有比RS-PSO-BP模型更高的精度。此外,尽管RS-PSO-SVM模型和PSO-SVM模型具有相同的预测精度,但是由于进行了属性约简,RS-PSO-SVM模型可以有效提高运行效率,降低模型复杂度。  相似文献   

8.
文章对多属性且属性值为连续的决策系统进行预测,提出了灰粗糙支持向量机预测方法.首先采用灰色关联分析计算出条件属性相对于决策属性的重要度;并对连续属性进行离散化,结合Pawlak属性重要度与灰关联度进行约简;将约简后的条件属性作为影响因子,基于支持向量机对决策属性进行预测.实验结果表明,该方法是有效可行的.  相似文献   

9.
标准的单值支持向量(One-class SVM)机不能对含有不完全信息的输入样本进行学习分类.为此该文提出用区间数来对不完全输入信息进行描述,将不完全的信息输入扩展为区间向量形式,引入区间运算来取代原来分类函数中的运算,从而根据区间运算结果来对信息不完全的模式输入进行分类.使用该方法,在分类过程中能够充分利用区间表示的先验知识,同时也能够减少该过程中输入模式中的属性(特征)度量代价,理论分析和实验结果均表明该方法能最大程度地保证分类结果的一致性,是有效和可行的.  相似文献   

10.
为了降低Web日志频繁序列模式挖掘误差,提出基于支持向量机的Web日志频繁序列模式挖掘方法。构建Web日志频繁序列模式检测序列,采用自相关特征分布式融合方法进行序列重组,提取序列模式的统计特征量,对其特征分布值进行信息融合。建立Web日志频繁序列模式融合式调度模型,采用支持向量机分析方法进行Web日志频繁序列模式挖掘的自适应学习与寻优控制,实现Web日志频繁序列模式挖掘。仿真结果表明,采用该方法进行Web日志频繁序列模式挖掘的误差较低,收敛性较好。  相似文献   

11.
直觉模糊支持向量机   总被引:2,自引:0,他引:2  
传统的模糊支持向量机难以区分具有相同隶属度的稀疏样本点和稠密样本点,进而可能降低分类精度.为了解决此类问题,利用直觉模糊集和模糊支持向量机,构建了直觉模糊支持向量机.仿真实验结果表明:与传统的支持向量机和模糊支持向量机相比,直觉模糊支持向量机的分类结果更精确.  相似文献   

12.
基于支持向量机的缺陷识别方法   总被引:6,自引:0,他引:6  
针对缺陷检测存在的检测手段落后、工序繁琐、准确率低、不易在线实施、受人为因素影响,以及用人工神经网络对小样本事件进行缺陷识别存在的过学习、推广性差等问题,从数据挖掘的角度,提出了直接从形成缺陷的影响因素着手,先消除工艺参数的冗余和噪声,再运用支持向量机分类算法,进行自动缺陷识别的新方法。通过具体的试验表明:该方法具有成本低廉、准确率高、推广性强、容易在线实施等技术优势。  相似文献   

13.
DNA 微阵列技术,使人们可以同时观测成千上万个基因的表达水平,对其数据的分析已成为生物信息学研究的焦点.针对微阵列基因表达数据维数高、样本小、非线性的特点,设计了一种基于粗糙集的支持向量机基因表达数据分类方法,该方法采用粗糙集进行基因特征约简,运用支持向量机进行数据分类,实验表明其分类效果良好.  相似文献   

14.
针对两种类别的肿瘤分类问题,首先运用信噪比方法筛选出表达水平发生显著性变化的特征基因,然后采用支持向量机作为分类器进行肿瘤分类,通过对两种类别的白血病DNA微阵列数据进行计算,达到了97.1%的分类准确度.  相似文献   

15.
支持向量机是近年来数据挖掘领域发展起来的一个新方法.对现有的四个光滑支持向量机进行了分析,研究了支持向量机的光滑与逼近的关系.数值实验结果表明,支持向量机在具有二阶光滑的条件下,分类效果随逼近精度的提高而改善.  相似文献   

16.
基于支持向量机的增量学习算法   总被引:1,自引:0,他引:1  
通过对支持向量机KKT条件和样本间关系的研究,分析了新增样本加入训练集后支持向量的变化情况,提出一种改进的Upper Limiton Increment增量学习算法.该算法按照KKT条件将对应的样本分为3类:位于分类器间隔外,记为RIG;位于分类间隔上,记为MAR;位于分类间隔内,记为ERR.并在每次训练后保存ERR集,将其与下一个增量样本合并进行下一次训练.实验证明了该算法的可行性和有效性.  相似文献   

17.
基于SVM的函数模拟   总被引:4,自引:2,他引:4  
支持向量机在高维空间中表示复杂函数是一种有效的通用方法, 提出了采用基于支持向量机的非线性回归法求解函数模拟问题.  相似文献   

18.
基于密度法的模糊支持向量机   总被引:13,自引:0,他引:13  
针对支持向量机对训练样本内的噪音和孤立点特别敏感、极大地影响了支持向量机分类性能的弱点,提出了一种基于密度法的模糊支持向量机,在支持向量机中引入样本密度模糊参数,从而减弱了噪音以及孤立点对支持向量机分类的影响.实验结果证明,在抗击孤立点和噪音点的干扰方面,上述方法优于类中心向量方法以及类中心点距离方法,取得了很好的效果.这一方法大大提高了支持向量机分类的泛化能力,从而大大提高了支持向量机的应用范围.  相似文献   

19.
基于支持向量机的故障诊断方法   总被引:12,自引:0,他引:12  
提出了基于支持向量机的故障诊断方法和步骤。诊断实例表明,与神经网络故障诊断方法相比,诊断小样本分析的支持向量机故障诊断方法具有分类能力强、推广能力好的特点。  相似文献   

20.
首先概述了支持向量机的发展与应用,指出其在机器学习领域有较大的发展前景.分析了支持向量机的基本算法,进而阐述了基于支持向量机的机器学习模型构造思路.给出了其应用于机器学习模型的核函数和训练算法,最后给出了学习模型的具体分类效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号