首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粗糙机械结合面的接触刚度研究   总被引:23,自引:7,他引:16  
为准确进行计入粗糙接触界面影响的组合结构动力分析,基于弹塑性理论对具有粗糙表面的长方微元体进行有限元接触分析,给出了根据受力和变形关系计算粗糙表面接触刚度的方法,得到了不同载荷作用下的法向和切向界面接触刚度.计算结果表明:表面形貌造成的接触应力分布不均匀和局部塑性变形导致法向界面接触刚度随着压力的增加先增大后减小,并随着表面粗糙度的增加而降低;切向界面接触刚度随着法向载荷和摩擦系数的增加而增加,随着切向载荷的增加而减小.当切向载荷增加到一定值时,接触界面将由微观滑移转化为宏观滑动,摩擦界面连接失效.  相似文献   

2.
通过考察双粗糙表面接触模型中微观摩擦系数的取值对接触表面的法向变形与法向载荷关系的影响,研究了磨削表面接触模型中微观摩擦系数的取值问题。采用表面轮廓仪测量磨削表面的轮廓数据,然后建立二维弹塑性有限元模型,计算不同微观摩擦系数时试样的法向变形与法向载荷关系。计算结果表明,接触表面间的微观摩擦系数对低面压下的接触变形影响比较大,载荷比较高的时候,摩擦系数的取值并不显著影响接触变形。在微观摩擦系数不为零时,法向变形与法向载荷关系曲线存在一个下陷区,摩擦系数越小,下陷区越小。与实验结果对比,发现忽略摩擦系数的计算结果与通过实验获得的法向变形与法向载荷关系最为接近,双粗糙表面接触模型中忽略微观摩擦系数比较合适。此外还根据计算结果研究了微观摩擦系数的取值对最高接触应力和真实接触面积的影响,发现忽略微观摩擦时,接触应力水平降低,真实接触面积有减小的趋势。  相似文献   

3.
固定接触界面法向静弹性刚度的改进弹簧分形模型   总被引:3,自引:0,他引:3  
根据赫兹接触理论推导两个微凸体之间互相作用的法向接触静弹性刚度.使用改进分形几何理论给出结合部的总法向接触静弹性条件刚度、总条件载荷的解析解.根据文献[10]的机床结合部法向变形量一压应力的经验幂律关系形式,推导界面静弹性刚度、总载荷的表达式.工程粗糙表面的算例表明,总法向刚度载荷曲线与文献[10]的实验结论基本一致.改进分形几何理论为深入研究分形和提取结合部参数提供了坚实的基础.  相似文献   

4.
为了解决界面摩擦系数计算方法问题,假设接触界面的摩擦能量以声子的形式向外传播,因此接触界面微观振子所耗散的能量等于宏观界面向外传递的热能,应用等效阻尼方法可求出等效黏性阻尼;同时提出了Kelvin振子摩擦耗散模型,通过此模型得到表面能变化的损耗率;最后应用"鹅卵石"模型求出摩擦系数.采用此公式计算的结果与前苏联学者Крагепьский等提出的摩擦系数与相对滑动速度试验中极大载荷情况下的摩擦系数变化趋势非常相似.另外,摩擦力计算公式所得数值与Lantz等利用超高真空原子力显微镜研究硅探针在NbSe2试样表面接触和摩擦时的试验结果比较接近.因此证明了此摩擦系数计算公式具有一定的可靠性.  相似文献   

5.
为了深入探讨硅探针在石墨烯台阶边缘的摩擦力变化特性及其微观摩擦机制,利用分子动力学方法建立模型,重点研究了不同的台阶层数、正压力作用下摩擦力变化规律,并利用x和z方向的应变云图分析摩擦特性.结果表明:正压力对石墨烯台阶边缘的摩擦力变化特性的影响不大,但台阶层数对石墨烯台阶边缘的摩擦力变化特性将产生较大影响;在压头爬上台阶的过程中,出现了明显挤压应力聚集的现象,在压头爬上多层台阶的过程中还伴随着挤压应力的释放;x方向的挤压应变以及z方向压坑中心圆的完整度是衡量摩擦力的重要指标.  相似文献   

6.
摘要: 基于粗糙表面微凸体变形的连续性和光滑性原理,研究了在法向载荷逐渐增加时的粗糙表面单个微凸体弹塑性过渡变形机制,提出了考虑弹塑性过渡变形机制的结合面微凸体微观接触模型,建立了法向接触载荷和法向接触刚度的数学模型;基于分形几何理论,建立了结合面法向接触刚度的分形模型,并对结合面法向接触刚度进行仿真计算.结果表明:在较小的塑性指数条件下,法向接触载荷与法向接触刚度近似呈线性关系;在较大的塑性指数条件下,法向接触载荷与法向接触刚度呈非线性关系;法向接触刚度随着分形维数和法向接触载荷的增加而增大,随着无量纲分形特征尺度系数的增大而减小;所得结合面法向接触刚度的仿真计算值与铣削加工和磨削加工条件下的实验值较吻合.  相似文献   

7.
基于接触界面势垒与摩擦接触面形貌的随机特性,建立了一种新的纳米级粗糙表面滑动摩擦力计算模型;利用该模型对满足严格平稳的同种摩擦副材料纳米级随机粗糙表面的摩擦力进行了数值计算.结果表明:经该模型数值计算得出的平均滑动摩擦力与法向载荷呈线性关系;法向载荷与平均接触界面间隙呈指数关系;在相同界面间隙下,平均法向力与粗糙峰高度分布标准差呈线性关系.计算结果与现有的研究结论相符,证明该模型是有效的、可行的;基于该模型,可根据接触界面的形貌分布参数、材料参数与法向载荷预测出平均滑动摩擦力.  相似文献   

8.
针对以经典Greenwood-Willamson(GW)统计模型为基础建立的结合面法向接触刚度计算模型忽略微凸体基体变形和相互作用而导致的结合面刚度计算值增大的问题,建立了一种综合考虑微凸体基体变形和相互作用的结合面法向接触刚度模型。该模型以GW统计模型计算刚度的方法为基础,根据经典赫兹接触理论和弹性理论,在微凸体的总变形量中引入单个微凸体受法向载荷作用时基体的变形函数和周围区域的变形函数,采用不动点迭代法先后推导出单独考虑微凸体基体变形或相互作用时结合面法向接触载荷和刚度的表达式。对两种变形函数进行叠加给出了含微凸体基体变形和相互作用的结合面法向载荷和刚度的表达式,进而建立了结合面法向接触刚度模型。与GW统计模型进行了对比,仿真结果表明:考虑微凸体基体变形或相互作用的结合面法向接触刚度小于GW统计模型的法向接触刚度,在微凸体高度标准偏差为0.05μm时,最小结合面平均分离距离下考虑基体变形后结合面法向接触刚度下降9.8%,考虑微凸体相互作用后结合面法向接触刚度下降23.2%,此时微凸体相互作用比基体变形对系统的总刚度影响大。随着微凸体高度标准偏差的增大,前述两因素对结合面法向接触刚度的影响规律呈现相反的趋势。  相似文献   

9.
采用自制高温摩擦试验机模拟实际热冲压工艺条件下22MnB5裸板的高温摩擦过程,分析初始摩擦温度、滑动速度和法向载荷对其摩擦行为的影响.结果表明:转移过程中试样表面形成氧化层,摩擦时氧化层起到保护和润滑作用,初始摩擦温度对裸板摩擦系数的影响不大;在较低的摩擦速度下,试样表面的氧化物形成厚度不均匀的小堆积块,试样表面凹凸不平并且无法良好支撑摩擦界面,摩擦系数增大;法向载荷较大时,试样表面氧化物被大量剥落,金属基体暴露,摩擦系数增大.  相似文献   

10.
假定每层刚心沿层间变化不大,质心与刚心的偏心距在一个方向上较小。这样把一般的建筑结构转化为具有层间剪切刚度Ki,扭转刚度K i的力学模型。设结构的层数为n,每层集中质量为Mj和Ji,质心相对于刚心的x方向坐标为xi(i=1,2,…,n),于是有下述自由振动方程:式中 厂为y向水位移向量; 为各层扭转角向量。对于框架结构采用D值法计算KV,K ,对于剪力墙则采用等效剪切刚度Ki和等效扭转刚度K i.假定地震载荷按倒三角形分布,Ki将由下式的弯曲变形的微分方程导出:式中 卜X/HI。一H‘/EI;\‘一。C;H一建筑物总高度IQ。一基底剪力。Ket将由下述…  相似文献   

11.
采用不同材料的板簧垫片,簧片间摩擦系数亦有所不同,因此设计钢板弹簧时仅考虑钢与钢的接触摩擦将造成其性能分析结果的不准确.针对这一问题,利用ANSYS软件的接触非线性功能,对少片变截面钢板弹簧的等效应力及刚度特性进行分析,得到不同摩擦系数下的VonMises应力分布和载荷-变形曲线,重点讨论了摩擦系数对钢板弹簧应力及刚度特性的影响;同时对钢板弹簧进行相应的性能试验.结果表明:少片变截面钢板弹簧的应力计算值和测试值误差较小,刚度仿真计算值和试验测量值基本吻合,相对误差小于5%,说明有限元分析能精确地模拟各簧片间的接触和摩擦问题,真实反映钢板弹簧的受力和变形情况,可用于研究簧片间不同摩擦系数对钢板弹簧应力及刚度特性的影响.  相似文献   

12.
为研究研磨加工中第三体对摩擦界面作用过程的影响,探索颗粒物质性质在该过程中的体现,文章研制了能够实现不同工况下摩擦界面间摩擦力的实时准确测量的小型面接触摩擦测试系统。选择不同粒径氧化铝粉末配制研磨液,在不同载荷和研磨液质量分数时进行试验。结果表明:磨粒粒径、载荷和研磨液质量分数对摩擦界面的摩擦特性有较大影响,摩擦界面间的摩擦力随着磨粒粒径的变大或加载载荷的增大而变大。对于研磨液,质量分数最小时测得的摩擦力最大,而质量分数为10%和20%时,测得的摩擦力变小并且相差不大,说明了摩擦界面间的颗粒可能起到了润滑作用。  相似文献   

13.
采用修正的各向同性三维分形表面的W-M函数构造隧道掘进机掘进后的隧道粗糙表面;考虑法向支撑载荷作用和岩石在压缩载荷下的失效机制,建立了掘进机撑靴与岩石粗糙表面法向接触刚度模型.研究变载荷工况下,不同粗糙隧道表面特性与掘进机撑靴接触界面刚度特性变化规律.结果表明:岩石的失效对接触刚度特性影响明显,相同的载荷下,岩石的失效会带来接触刚度的减小;当岩石弹性模量相同时,接触刚度随着硬度的增大而增大;当岩石硬度相同时,接触刚度随着弹性模量的增加而减小;随着外部载荷的增加,粗糙表面的接触刚度随之增加,而表面粗糙度的增大会引起界面接触刚度相应减小.  相似文献   

14.
采用修正的各向同性三维分形表面的W M函数构造隧道掘进机掘进后的隧道粗糙表面;考虑法向支撑载荷作用和岩石在压缩载荷下的失效机制,建立了掘进机撑靴与岩石粗糙表面法向接触刚度模型.研究变载荷工况下,不同粗糙隧道表面特性与掘进机撑靴接触界面刚度特性变化规律.结果表明:岩石的失效对接触刚度特性影响明显,相同的载荷下,岩石的失效会带来接触刚度的减小;当岩石弹性模量相同时,接触刚度随着硬度的增大而增大;当岩石硬度相同时,接触刚度随着弹性模量的增加而减小;随着外部载荷的增加,粗糙表面的接触刚度随之增加,而表面粗糙度的增大会引起界面接触刚度相应减小.  相似文献   

15.
应用改进分形几何理论的结合部切向刚度模型   总被引:4,自引:0,他引:4  
针对现有分形接触理论对2个机械部件粗糙表面相互接触形成的结合部的切向接触刚度分形模型存在违反赫兹法向接触力学的缺陷,以改进分形几何理论为基础、在严格应用赫兹法向接触力学的基础上,推导出结合部总切向接触静弹性条件刚度、总条件法向载荷的分析解。数值仿真表明:结合部的切向接触静弹性刚度随着总法向载荷的增加基本上呈线性增加的态势,随着表面轮廓分形维数的增加而增大,随着分形粗糙度的减小而增大;在恒定法向载荷作用下,最初作用于结合部的切向载荷使得切向接触静弹性刚度最大,该刚度随着切向载荷的增加而减小,随着静摩擦系数的增加而增大;随着法向载荷的增加,法向接触静弹性刚度的增量加大。该结果可为进一步研究粗糙表面的分形特性提供参考。  相似文献   

16.
通过对膜层的变形、最大应力随膜层数的变化、界面切应力分布和表面张应力分布等的计算、分析得出了这些参数的分布及其随载荷和膜层数的变化规律.这些结果将为多层膜的结构优化设计提供定量的依据.  相似文献   

17.
针对梯度拉伸荷载作用下正方形锯齿型石墨烯薄膜的褶皱变形进行了分子动力学模拟.研究了石墨烯表面形成褶皱的发展、演化过程,揭示了边界条件和荷载条件对石墨烯褶皱变形的重要影响,得到了褶皱波幅、波长、离面位移和褶皱方向角等随加载位移的变化规律,研究了石墨烯尺寸、温度和荷载梯度对石墨烯褶皱变形的影响.结果表明:褶皱的发展、演化过程可分为褶皱前期、中期、后期、末期4个阶段;随着加载位移增加,褶皱幅值、幅值波长比和最大离面位移逐渐增大,褶皱波长和方向角则减小;尺寸和温度对石墨烯褶皱都会产生重要影响,而荷载梯度对石墨烯褶皱影响甚微.  相似文献   

18.
通过5根碳纤维布(CFRP)加固榫卯接长木梁的受弯静力试验,研究CFRP布层数对加固榫卯接长木梁抗弯性能的影响.试验结果表明,榫卯接长木梁在粘贴1~3层平行于梁轴方向的碳纤维布后抗弯承载力提高了29.1~30.9倍,原木梁(参照构件)为弯曲破坏,榫卯接长木梁经碳纤维布加固后由于碳纤维布与木梁剥离而发生破坏.因此,当平行与梁轴方向的碳纤维布层数从1层变化到3层时,木梁的抗弯承载力、刚度和能量吸收能力变化不大.  相似文献   

19.
为了从微观角度研究粗糙表面的法向接触特性,构建了一种具有圆锥微凸体的有限元分析模型。对反双曲余弦应力进行定积分,获得了作用在单个圆锥接触区域的总法向弹性接触力;给出了圆锥顶点法向变形量与接触半径之间的拟合公式。数值模拟表明:反双曲余弦应力在锥尖处(接触区域的中心)有一个自然对数奇点,但作用在单个圆锥接触区域的总法向弹性接触力有边界;单个圆锥的法向弹性接触载荷随着半顶角的增加先增大后减小;结合部整体的法向接触载荷随着表面粗糙度的减小而增大;当法向最大变形量明显增大时,结合部整体的法向接触载荷随着法向最大变形量的增加仅有微小的增加;半顶角越大,单个圆锥的法向接触刚度也越大;随着圆锥顶点法向变形量的增加,单个圆锥的法向接触刚度先略微减小,而后保持不变;法向临界变形量较小时,结合部整体的法向接触刚度随着法向临界变形量的增加而近似于线性增大;表面粗糙度越小,结合部整体的法向接触刚度增加得越明显;法向临界变形量较大时,结合部整体的法向接触刚度趋于不变。  相似文献   

20.
为了深入了解库伦摩擦对波箔气体轴承特性的影响,考虑了波箔片与平箔片间摩擦力以及波箔片与轴承座间摩擦力,通过有限元梁单元模型计算波箔轴承单个波拱的位移,采用能量耗散的方法对波箔轴承的刚度和阻尼特性进行了评价,分析了载荷基准值和载荷波动幅值以及摩擦因数对库伦阻尼耗散能量以及箔片刚度特性的影响规律。研究结果表明:随着载荷基准值和载荷波动幅值增大,库伦阻尼耗散能量明显增加,有助于提高轴承运行的稳定性;载荷波动幅值增大,波箔轴承刚度先迅速减小然后逐渐趋于稳定;载荷基准值变化对波箔刚度影响较小,波箔刚度基本不发生变化。载荷由最大值逐渐减小时,波箔拱顶部摩擦力刚开始时仍为滑动摩擦力。进入滞止阶段后,滑动摩擦力逐渐转变为静摩擦力且摩擦力方向逐渐由同向变为反向。箔片轴承设计过程中,应以支撑刚度或阻尼耗散为目标,选择最优的摩擦因数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号