首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据重载铁路货物列车-轨道系统(FTT系统)横向振动稳定性分析方法,提出基于货物列车抗脱轨安全度的重载铁路轨道结构强化措施评价方法,分析并量化提高钢轨等级、采用III型轨枕、强化扣件及道床等轨道强化措施对货物列车抗脱轨安全度的影响。研究结果表明:与提高钢轨等级相比,采用III型轨枕对列车抗脱轨能力、临界车速及容许极限车速的影响更大;强化扣件或道床均可大幅度提高列车抗脱轨能力、临界车速及容许极限车速,但当扣件和道床的横向刚度分别大于120 MN/m和15 MN/m时,货物列车抗脱轨安全度提升幅度较小;上述轨道强化措施均能改善行车平稳性,但强化道床对行车平稳性影响较小。轨道强化措施具有提高货物列车抗脱轨安全度的功能,且本文提出的评价方法能够反映列车抗脱轨信息,可为轨道强化措施的评价和制定提供参考。  相似文献   

2.
针对重载铁路常见桥梁结构特点,建立货物列车-轨道-桥梁系统(简称"FTTB系统")空间振动计算模型;按照列车脱轨能量随机分析理论,提出重载铁路FTTB系统横向振动稳定性分析方法。通过算例,计算圆形墩加固前、后FTTB系统横向振动稳定性及其振动响应。研究结果表明:算例中圆形墩加固后FTTB系统抗脱轨能力可提高50%;圆形墩加固前、后FTTB系统横向振动失稳临界车速分别为134.45 km/h和156.99 km/h,容许极限车速分别为107.56 km/h和125.59 km/h;圆形墩加固后货物列车以80 km/h车速过桥时平稳性有保证;与加固前相比,桥梁跨中和墩顶横向位移分别减小54.5%和83.8%。该分析方法能够同时反映货物列车脱轨信息和FTTB系统空间振动特性,可为桥上货物列车脱轨预防措施提供更加全面、科学的评价。  相似文献   

3.
基于列车-有砟及无砟轨道系统空间振动计算模型,采用列车脱轨能量随机分析方法,分别计算货物列车在有砟、无砟轨道上的脱轨全过程,得出2种车轨系统横向振动极限抗力作功及其动力响应,分析货物列车的运行安全性、2种车轨系统的空间振动特性。研究结果表明:与有砟轨道相比,无砟轨道的抗脱轨能力最大可提高45.9%,车速为90 km/h时无砟轨道上车体竖向Sperling平稳性指标、轮对横向力、轮轨竖向力分别减小73.5%,22.1%和27.3%;无砟轨道各部件横向位移、加速度均小于有砟轨道相应值,而钢轨竖向位移大于有砟轨道相应值,但由于无砟轨道竖向位移主要由扣件承担,导致钢轨传至道床板的竖向位移衰减75.3%;无砟轨道各部件竖向加速度均大于有砟轨道相应值,产生的振动、噪声对周围建筑影响更大。建议在重载铁路新线设计中优先采用无砟轨道,但应采取减振降噪措施。  相似文献   

4.
建立了单趾弹簧扣件、弹性支承块式、橡胶浮置板式3种无砟轨道的空间振动分析模型和地铁列车-无砟轨道系统空间振动分析方程.分别计算了3种无砟轨道在地铁列车荷载作用下的空间振动响应,并比较了系统响应随无砟轨道类型及车速的变化规律.结果表明,系统振动响应随车速的提高而增大;在车速相同的条件下,无砟轨道类型对钢轨竖向位移、轨道板竖向位移、轨道板竖向加速度、轮轨竖向力、脱轨系数及轮重减载率等响应影响较大,对其他振动响应的影响不甚明显;橡胶浮置板式轨道的竖向位移、横向位移与轨距扩大值最大;单趾弹簧扣件轨道轮轨作用力最大,橡胶浮置板轨道轮轨作用力最小;支承块和浮置板振动加速度明显小于钢轨振动加速度;在3种轨道行驶条件下,随着车速提高列车脱轨系数和轮重减载率均增大,竖向振动加速度最大值、横向振动加速度最大值、Sperling竖向舒适度指标和Sperling横向舒适度指标大致呈现先增大后减小趋势.当地铁列车在80km/h以下的运行速度通过这3种轨道结构时,列车的安全性和舒适性均能得到保证.  相似文献   

5.
为确保地震作用下货物列车在脱轨瞬间及时停车,建立地震作用下列车-轨道系统空间振动计算模型,并提出地震作用下列车脱轨全过程计算方法;以9~10级地震烈度下的强震为研究对象,分别计算货物列车以不同车速在直线和曲线线路上的脱轨全过程,分析轮轨几何接触状态及其相对位置.结果表明:地震烈度及车速对转向架与钢轨横向相对位移影响明显,而对转向架摇头角影响较小;曲线轨道对转向架与钢轨横向相对位移、转向架摇头角影响均较大;转向架与钢轨横向相对位移及转向架摇头角最大值分别为155 mm和4.6°.这些数据可为列车脱轨检测装置的研发提供参考.  相似文献   

6.
针对货物列车在曲线上因超速引起的脱轨问题,根据列车-轨道系统空间振动计算模型及列车脱轨能量随机分析理论,采用轮轨位移衔接条件并考虑轮轨"游间"的影响,提出了货物列车超速条件下的脱轨过程计算方法.根据该方法,对不同曲线轨道形位等工况下的货物列车脱轨过程进行了计算,分析了列车脱轨过程中的轮轨接触状态、轮轨相对位置及几何尺寸.研究结果表明,随着曲线半径的增大,在列车脱轨瞬间,转向架摇头角及转向架与钢轨横向相对位移逐渐减小,最大值分别为5.82°和78.1 mm.该结果可为研发机械式的列车脱轨检测装置提供理论依据和基础数据,进而确保该检测装置能在列车脱轨掉道的第一时间检测到位,及时停车.  相似文献   

7.
客运专线板式无碴轨道动力设计参数   总被引:9,自引:0,他引:9  
基于高速列车-板式无碴轨道时变系统竖向振动分析理论,研究了车速、轨道几何不平顺幅值、CA砂浆刚度及阻尼等动力学参数对此系统竖向振动响应的影响规律。在此基础上,进一步得出了合理的CA砂浆刚度取值范围。研究结果表明:高速列车-板式无碴轨道系统竖向振动响应均随车速及轨道几何不平顺幅值的增大而增大;合理的CA砂浆刚度取值范围为1.0~1.5 GPa/m;CA砂浆阻尼应尽可能取较大值,有利于降低轨道板的振动,延长板式无碴轨道结构的使用寿命。  相似文献   

8.
为研究客运列车因曲线超速引起的脱轨规律,基于列车-轨道系统空间振动计算模型,建立客运列车-曲线轨道系统空间振动计算模型。基于该模型,根据列车脱轨能量随机分析方法,提出客运列车曲线超速引起的脱轨全过程计算方法,计算不同曲线半径、外轨超高下列车超速引起的脱轨全过程,分析轮轨接触状态及其相对位置。研究结果表明:据脱轨系数和轮重减载率难以判定客运列车超速时是否脱轨;脱轨车辆位于编组前部,在脱轨前及时预警十分必要;随着曲线半径、外轨超高增大,列车脱轨速度随之增大,脱轨瞬间转向架与钢轨横向相对位移也随之增大;并考虑安全系数1.25,得到转向架与钢轨横向相对位移最大为60.2 mm,这可为研发客运列车曲线超速脱轨报警装置提供参考。  相似文献   

9.
焦柳线酉水大桥上货物列车脱轨分析   总被引:3,自引:2,他引:3  
结合自动控制理论,研究了桥上列车脱轨的力学机理,发现桥上列车脱轨是列车-桥梁时变系统横向振动丧失稳定的结果。根据桥上列车脱轨能量随机分析理论,对焦柳线酉水大桥上货物列车是否脱轨进行了计算和分析,并得到了列车脱轨时此系统振动响应的时程曲线;同时,提出了该桥在不采取加固措施的条件下预防列车脱轨的限速建议值,该值与该桥实车振动试验所确定的限速值一致。最后,指出我国《铁路桥梁钢结构设计规范》中制订连续钢桁梁桥横向刚度限值时存在的问题,论证了按列车脱轨能量随机分析理论重新制订桥梁横向刚度限值的必要性。  相似文献   

10.
基于梁-轨相互作用理论建立线-板-桥-墩空间耦合模型,研究了无砟轨道简支梁桥墩纵向刚度对钢轨附加力及断缝值的影响,给出了市域铁路简支梁桥墩纵向刚度限值的控制因素及合理值.结果表明:增大桥墩纵向刚度可减小钢轨附加总应力和梁-轨相对位移,不同于有砟轨道简支梁桥,市域铁路无砟轨道简支梁桥墩纵向刚度限值由钢轨强度控制;建议24,32,48 m简支梁桥上铺设U71Mn钢轨和常阻力扣件,温暖区域桥墩刚度限值分别取5,6和15 MN/m,寒冷区域取5,12和54 MN/m;64 m和80 m简支梁上铺设U75V钢轨和常阻力扣件,温暖区域刚度限值分别取22 MN/m和70 MN/m,寒冷区域取84 MN/m和240 MN/m;当寒冷区域80 m简支梁桥两侧梁端铺设小阻力扣件时,桥墩刚度限值可减小至84 MN/m.  相似文献   

11.
运用列车脱轨能量随机分析理论计算5座横向振幅超限桥梁列车走行安全性.基于脱轨分析理论,提出新的铁路桥梁横向振幅行车安全限值分析方法.具体步骤为:建立考虑一定误差系数的预防脱轨条件,确定桥梁横向刚度行车安全判别参数,确定预防脱轨的临界梁墩系统,计算梁墩系统横向振幅行车安全限值.运用此方法,计算提速线预应力混凝土T形梁桥横向振幅行车安全限值.研究结果表明:现有的桥梁横向振幅行车安全限值过于严格;提速线跨度为32 m和24 m的预应力混凝土T形梁桥横向振幅行车安全限值分别为L/3 980和L/4 411(L为桥梁跨度);取L/4 500作为提速线预应力混凝土T形梁桥横向振幅行车安全限值建议值.  相似文献   

12.
基于列车-轨道系统空间振动分析理论,考虑洪涝灾害的影响,建立洪涝灾害条件下列车-轨道系统空间振动分析模型。根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统空间振动矩阵方程。运用列车脱轨能量随机分析理论,提出洪涝灾害条件下列车脱轨全过程计算方法,分别对该条件下直线和曲线路段列车脱轨全过程进行计算和分析。研究结果表明:洪涝灾害引起的货物列车在直线和曲线路段脱轨时转向架摇头角分别为0.20°和0.27°,转向架与钢轨之间的横向相对位移分别为52.8 mm和48.1 mm,相比直线路段,列车在曲线路段更易脱轨。这些研究结果可为研发机械式的列车脱轨报警器提供重要的理论依据和技术参数,进而确保该报警器能在列车脱轨时立即发出报警,使列车及时停车。  相似文献   

13.
为研究扣件失效对地铁整体道床轨道及车体振动性能的影响,基于结构动力学理论建立地铁列车-整体道床(隧道衬砌)耦合分析模型,采用弹簧阻尼模拟土体,采用模态分析和Newmark法求解动力响应,研究列车速度、扣件失效数量和轨道不平顺对地铁车轨振动的影响。研究结果表明:扣件失效会加剧系统振动响应,对车体加速度影响较显著,但对钢轨位移和轮轨接触力的影响相对较小;列车速度对钢轨位移和邻近扣件反力的影响较小,对车体加速度和衬砌加速度影响显著;随着失效扣件数量增加,车体竖向加速度等系统动力响应增幅明显;在考虑轨道不平顺的情况下,扣件失效会加大钢轨加速度和衬砌加速度的振级,而车体竖向加速度可作为确定失效扣件位置的敏感指标;扣件失效会增大邻近扣件的受力,造成二次失效,影响乘客舒适性和周围环境振动,需要及时检修,保障地铁正常运行。  相似文献   

14.
综述了列车脱轨的国内外研究现状;分析了脱轨研究中的主要问题为:各国制订的规范标准不能预防列车脱轨,未抓住主要矛盾,脱轨计算理论存在三个根本问题——列车轨道(或桥梁)时变系统振动方程组解的唯一性无保证,横向振动的激振源不清楚,该时变系统振动的随机分析问题未解决;提出了一条突破列车脱轨难题的能量随机分析道路、预防脱轨措施及抗脱轨安全系数的计算方法;计算了四个列车脱轨实例,计算结果均与实际发生的脱轨事故和脱轨试验测出的车辆振动响应符合。  相似文献   

15.
地铁隧道列车振动特性试验研究   总被引:2,自引:0,他引:2  
为获取隧道内列车荷载的振动特性,对某地铁区间隧道进行了试车试验.分析了扣件类型、列车运行速度等因素对荷载特性的影响;基于隧道断面的实测结果分析了其振动传播规律.结果表明:当地铁列车以60km/h通过时,实测振动源强均值为70.41dB;沿隧道断面的振动幅值逐渐减小,且荷载的高频分量逐渐衰减,钢轨竖向加速度最大,且以100Hz以上的高频分量为主;道床顶面和隧道基底的振动量值接近,且远大于隧道侧壁;随着车速增加,各测点的竖向分频振级逐渐增大,且低频段的振级增加更为显著,但车速的增加并未改变荷载的主频段,且随着车速增加,道床与隧道侧壁之间的振动传递损失增大;扣件类型对荷载的分频振级有较大影响.  相似文献   

16.
针对嵌入式轨道应用于地铁环境时的刚度设计方法及合理取值开展研究。基于温克尔弹性地基梁理论,系统性地分析地铁用无扣件嵌入式轨道结构垂向、横向、抗倾覆、纵向及抗拔等各项刚度的组成及影响因素,并与传统扣件式轨道结构类比,形成各项刚度的设计、测试方法,给出取值建议。研究结果表明:嵌入式轨道垂、横向刚度可用钢轨基础弹性模量表征;纵向刚度与线路无缝化、限位结构以及高分子浇筑料施工锁定等有关;室内轨道结构样件测试验证了上述结果。建议:地铁用嵌入式轨道结构垂向钢轨单位长度基础弹性模量取32~64k N/mm,横向钢轨单位长度基础弹性模量取24.76~91.57 k N/mm,一般地段纵向刚度不小于每轨15 k N/m,小阻力地段约每轨6.4 k N/m,抗拔力应不小于每轨32 k N/m。  相似文献   

17.
主要研究高速列车超临界和亚临界分岔蛇行运动的基本特征和评价方法.首先考虑不同轨道激励对蛇行运行分岔图的影响,并且提出一种在轨道激励的基础上增加横向脉冲的方法,然后根据极限环波幅、构架横向加速度均方根值及轮轴横向力均方根值分别对高速列车蛇行运动稳定性进行对比.针对不同高速列车进行极限环失稳后的安全性评估,分析高速列车蛇行失稳的脱轨安全性.另外,对于具有磨耗型车轮踏面的车辆,也对其蛇行运动稳定性和运行安全性评估进行了探讨.最后,在滚动振动试验台上进行了稳定性测试,比较了不同蛇行运动稳定性评价方法并验证了仿真结果.  相似文献   

18.
弹性支承块式轨道在高速列车作用下的动力响应分析   总被引:1,自引:0,他引:1  
为研究高速列车-弹性支承块式无碴轨道系统的动力学性能,提出一种竖向振动分析方法。其原理是:将高速列车的动车和拖车模拟为具有二系悬挂的多刚体系统;将弹性支承块式无碴轨道模拟为具有24个自由度的轨段单元的集合;基于弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统竖向振动矩阵方程,并采用Wilson-θ数值积分法求解,计算速度为200km/h时此系统竖向动力响应,研究轨道刚度对此系统竖向振动响应的影响规律。研究结果表明:钢轨竖向位移最大为1.125mm,支承块竖向位移最大值为0.522mm,并且计算波形图可以反映列车编组;钢轨扣件竖向刚度的合理取值范围为60~80kN/mm,块下垫层的竖向刚度宜大于80kN/mm。  相似文献   

19.
货物列车编组对列车-桥梁系统空间振动的影响   总被引:2,自引:0,他引:2  
基于列车、桥梁空间振动分析模型,利用弹性系统动力学总势能不变值原理及形成系统矩阵的“对号入座”法则,建立了列车-桥梁系统空间振动矩阵方程,采用Wilson-θ法求解。研究了5种不同货物列车编组对列车-桥梁系统空间振动响应的影响,得出了一些符合物理概念的桥梁振动响应时程曲线。研究结果表明:机车、车辆轴重是影响桥梁竖向振动位移的主因;空载货车作用下的车桥系统横向振动响应比重车的要大;全列空车编组及空重混编是影响列车-桥梁系统横向振动响应的不利编组,而全列空车编组更为不利;在进行桥上货物列车脱轨分析时,宜采用全列空车编组;通过改善列车编组的方法可以提高列车-桥梁系统振动性能。  相似文献   

20.
基于列车-轨道系统空间振动分析理论,考虑横风作用,建立横风-列车-轨道系统空间振动分析模型。根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统空间振动矩阵方程,并编制相应的计算机程序求解该方程。计算横风作用下的列车-轨道系统空间振动响应,研究不同类型铁路车辆振动响应及倾覆稳定性的差异,分析横风对此系统振动响应的影响规律。研究结果表明:罐车的稳定性最好,敞车次之,棚车最差;横风对车体横向位移、轮重减载率和倾覆系数有很大影响,对车体横向加速度、脱轨系数及横向平稳性指标影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号