首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
MicroRNAs (miRNAs) are an abundant class of RNAs that are approximately 21-25 nucleotides (nt) long, interact with mRNAs and trigger either translation repression or RNA cleavage (RNA interference, RNAi) depending on the degree of complementarity with their targets. Here we show that the imprinted mouse distal chromosome 12 locus encodes two miRNA genes expressed from the maternally inherited chromosome and antisense to a retrotransposon-like gene (Rtl1) expressed only from the paternal allele.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   

16.
17.
Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos   总被引:7,自引:0,他引:7  
  相似文献   

18.
The gene encoding the insulin-like growth-factor type-2 receptor (Igf2r) is maternally expressed and imprinted. A CpG island in Igf2r intron 2 that carries a maternal-specific methylation imprint was shown in a transgenic model to be essential for Igf2r imprinting and for the production of an antisense RNA from the paternal allele. We report here that the endogenous region2 is the promoter for this antisense RNA (named Air, for antisense Igf2r RNA) and that the 3' end lies 107,796 bp distant in an intron of the flanking, but non-imprinted, gene Mas1.  相似文献   

19.
Induction of an interferon response by RNAi vectors in mammalian cells   总被引:45,自引:0,他引:45  
DNA vectors that express short hairpin RNAs (shRNAs) from RNA polymerase III (Pol III) promoters are a promising new tool to reduce gene expression in mammalian cells. shRNAs are processed to small interfering RNAs (siRNAs) of 21 nucleotides (nt) that guide the cleavage of the cognate mRNA by the RNA-induced silencing complex. Although siRNAs are thought to be too short to induce interferon expression, we report here that a substantial number of shRNA vectors can trigger an interferon response.  相似文献   

20.
In RNA interference (RNAi), double-stranded RNA (dsRNA) is processed into short interfering RNA (siRNA) to mediate sequence-specific gene knockdown. The genetics of plant RNAi is not understood, nor are the bases for its spreading between cells. Here, we unravel the requirements for biogenesis and action of siRNAs directing RNAi in Arabidopsis thaliana and show how alternative routes redundantly mediate this process under extreme dsRNA dosages. We found that SMD1 and SMD2, required for intercellular but not intracellular RNAi, are allelic to RDR2 and NRPD1a, respectively, previously implicated in siRNA-directed heterochromatin formation through the action of DCL3 and AGO4. However, neither DCL3 nor AGO4 is required for non-cell autonomous RNAi, uncovering a new pathway for RNAi spreading or detection in recipient cells. Finally, we show that the genetics of RNAi is distinct from that of antiviral silencing and propose that this experimental silencing pathway has a direct endogenous plant counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号