首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对微米级液滴撞击低温球形表面的动态行为进行了可视化实验.研究了液滴直径、球面温度等因素对微米级液滴撞击过程的影响及液滴撞击直径3 mm和5 mm金属钢球的冻结过程.当实验球面温度分别为–20℃和–30℃时,液滴撞击低温金属钢球表面时液滴铺展后迅速回缩成塔形状然后缓慢的铺展直至稳定状态,与常温状态下相比,液滴形态没有明显的振荡过程.结果表明:撞击速度越大,液滴具有的初始动能越大,液膜最大铺展弧长越大.随着载体颗粒直径的增加,液膜最大铺展弧长也随之增加,液膜的厚度却随载体颗粒直径的增加而减小;随着液滴直径的增加,液膜铺展弧长及液膜厚度都随之增加.通过实验数据统计分析可知,环境温度的显著水平最高,然后依次为液滴直径、载体颗粒直径.  相似文献   

2.
单液滴碰撞不同尺寸等温壁面过程   总被引:1,自引:0,他引:1  
应用基于VOF的界面跟踪方法分析了单液滴碰撞不同尺寸等温固体壁面时铺展、回缩或延伸至壁外形成液膜、液膜破碎等过程的动力学行为.通过与文献中液滴在壁面上铺展直径随时间变化的试验对比,证实了模型的可靠性.通过改变We数、Re数及壁面宽度,考查了初始液滴碰撞动能、表面能及固体壁面尺度对液滴碰壁现象的影响,计算结果表明:当壁面...  相似文献   

3.
以旋风分离器内液滴撞击筒壁为研究背景,探讨了撞击形成的液膜边缘特性,考察了韦伯数(We)、撞击速度、初始液滴直径对液膜边缘形成的指形液滴和卫星液滴的影响.结果发现:不同We数下,最大液膜直径形成的指形液滴体积分布集中在0.2~0.6,近似于高斯分布;随着We数的增加,大体积卫星液滴出现的几率也随之增大;且卫星液滴的体积随着初始液滴直径和初始撞击速度的增大而增大;另外,在同一铺展过程中,边缘液滴、指形液滴和卫星液滴三者的数量呈依次递减的关系.  相似文献   

4.
为了研究液滴动态铺展特性以及冻结行为和机理,基于可视化实验平台,探究了壁面温度对液滴动态结冰过程的影响,分析了铺展直径随时间的变化规律和不同冰型形成的物理机制。实验中采用亲水硅片以及较大的撞击速度增加换热面积,同时采用较低的壁面温度强化液体与冷板之间的换热过程。结果表明,壁温降低导致液滴黏性耗散增加,液滴最大铺展直径略有减小,但壁面温度对于动态铺展阶段的影响不大;壁面温度对结冰过程的影响十分显著,不同的壁面过冷度可产生不同结冰形态;当壁面温度相对较高时,液滴呈现中间成尖结冰形态,壁面温度较低时,出现了一种新的内凹环状结冰形态,后者的形成是由于触发了液膜内部结冰,从而导致液膜内出现冻结锋面,且该锋面同时向外、向上发展。另外,本研究提出了无量纲导热因子以反映壁面导热性能的影响,通过结合无量纲导热因子和韦伯数的影响,揭示了不同冰型产生的条件,为控制结冰形态提供了新的策略。  相似文献   

5.
基于拉瓦尔管设计了一种雾化喷管,使天然气产生超音速流动,把液流剪切破碎成小液滴,降低了气液相截面密度和流动阻力.采用数值仿真软件Fluent模拟了喷管内部气液相流动的微观形态和内部流场规律,分析了气相压力、液流速度、喷孔直径和液相喷孔数量对雾化颗粒分布规律和雾化效果的影响.研究得出在303 975 Pa的气相压力下液流喷射深度为0.911 2 mm,散射宽度为1.201 3 mm,雾化效果较好;气相压力增大至1 013 250 Pa时,雾化颗粒贴近壁面,喷射深度为0.304 1 mm,散射宽度为0.365 0 mm,雾化效果变差.液流速度增加,雾化效果增强;喷孔直径增大,喷射深度增加,喷孔直径为1.2 mm时,散射宽度有极大值2.356 2 mm,雾化效果最好.使用双喷孔结构,雾化颗粒直径分布均匀,近似于正态分布,雾化颗粒直径减小,雾化效果增强.通过改变工况参数,可提高携液率和排采质量.  相似文献   

6.
考虑到液滴在纤维上的附着形态是滤网运行压降的重要影响因素,为探究油颗粒在纤维上的附着形貌,采用数学模型和数值模拟方法,对液滴附着形貌的几何特征参数进行预测计算.基于平面弯曲思路提出了蛤壳状数学模型,并采用有限元软件对蛤壳状数学模型和现有的梭状数学模型的精度进行验证.通过有限元软件和数学模型计算获得蛤壳状和梭状2种附着形貌的分界以及无量纲液滴体积和接触角对附着形貌几何特征的影响.结果表明,随着接触角的增加,液滴在一定直径的纤维上形成梭状所需的体积呈指数增加;在接触角θ10°和无量纲液滴体积不大于3时,蛤壳状数学模型的计算误差小于10%;接触角减小时润湿长度和自由表面增加,纤维和油颗粒的碰撞和接触几率增加;无量纲体积越小的液滴演变成液桥或液膜的几率越小.  相似文献   

7.
采用VOF方法模拟了多孔介质中垂直放置的2个正庚烷液滴垂直撞击壁面的过程,研究了韦伯数、雷诺数、壁面尺寸及圆心距等因素对双液滴碰壁现象的影响,分析了双液滴碰壁过程液滴碰壁、液滴间相互碰撞、相溶、铺展形成附壁液膜、形成皇冠形空间液膜及液膜破碎等过程的动力学特性.分别对比了只改变其中1个参数的情况下,皇冠型空间液膜高度和附壁液膜高度的变化.结果表明:在其他参数不变的情况下,分别增大We,Re,d0/H以及减小d0/s,飞溅的二次液滴数量明显增多,皇冠型空间液膜高度都有不同程度的增大,对附壁液膜高度也有不同程度的影响.  相似文献   

8.
液滴与球形表面的碰撞为喷雾包衣等工程应用的基础.以单液滴与球形光滑表面为研究对象,采用高速相机,分析了在液滴不同撞击速度(0.88~4.43m/s)和不同直径的球面(5~15mm)实验条件下涂覆率的变化.研究了液滴与球面发生碰撞时发生的铺展震荡、涂覆球面、破碎飞溅现象.最后,建立了K值、球面直径与碰撞现象之间的关系图,为理论分析和数值模拟提供依据.  相似文献   

9.
为实现润湿图案化的超疏水表面在航空电子设备散热中的应用,本文对液滴撞击双疏水表面(具有疏水性图案的超疏水基质)的润湿行为和传热特性进行了分析.通过使用高速相机和红外相机,我们获取了液滴铺展和回退阶段的动力学以及表面温度和热流量的相应空间分布.本文研究了液滴撞击超疏水、疏水和双疏水表面上的动态润湿和局部传热的差异.此外,本文还分析了表面温度和撞击高度对液滴撞击过程的影响.结果表明,所有表面在铺展阶段都具有相同的润湿特性和相似的传热行为.表面温度变化并不能对铺展阶段表面润湿特性产生较大的影响,液滴铺展时间与表面温度和撞击高度无关.在回退阶段,表面润湿特性的差异使得三个表面之间的传热特性明显不同.双疏水表面特殊润湿特性使得回退阶段液膜的接触线速度存在跳变现象,形成了许多小液滴,增加了接触面积,同时又兼具了超疏水表面的回弹特性.  相似文献   

10.
应用数值法对双液滴垂直撞击液膜的动力学行为进行研究.采用VOF法结合网格局部瞬时加密技术捕捉气液两相界面.主要讨论了液滴韦伯数和液滴间距对碰撞演化过程和飞溅特性的影响,给出演化过程中包括二次液滴数量及尺寸等特性参数的变化规律.结果表明,双液滴撞击液膜,除了会生成皇冠形水花外,还会出现水花相撞形成的中心射流.在研究范围内,中心射流产生的二次液滴尺寸比皇冠形水花处生成的液滴尺寸小,中心射流破碎较早,所以二次液滴平均尺寸初始阶段增长较快,后期变化较慢,近似呈现线性增长.  相似文献   

11.
为了研究液滴撞击薄液膜后形成的冠状结构的破碎过程,搭建单液滴撞壁的光学观测系统,采用激光诱导荧光法研究单液滴撞击不同黏度薄液膜的过程.试验中采用无水乙醇作为入射液滴,丙三醇水溶液作为壁面液膜,观测液滴撞击薄液膜后形成的冠状结构的破碎过程,根据其破碎过程的特点分为3类:飞溅破碎、孔洞破碎和混合破碎.对每种破碎类型的特性,...  相似文献   

12.
对液滴撞击固体表面的过程进行实验研究,考察液滴的物性和操作条件对撞击过程的影响,结果表明:随着液滴黏度的增加、或表面张力系数的增大、或撞击速度的减小,液滴的铺展直径、铺展速度和铺展面积均减小;液滴的能量在黏性中的耗散主要发生在撞击的初始阶段,随着液滴黏度的增加、或表面张力系数的减小、或撞击速度的增大,黏性耗散的速率均增加。本文得到的关于液滴雷诺数和韦伯数的关联式可用于预测液滴的最大铺展直径和最大铺展面积。  相似文献   

13.
塔式造粒是当前生产中小颗粒尿素的主流工艺。根据塔式尿素造粒的物理过程,分析了形成液滴的液柱的受力情况,建立了液柱临界长度、最大液滴直径的计算模型。模型计算与实验数据吻合得较好,可以用于工程计算。利用该模型,分析了喷口直径和各种操作条件对液滴直径的影响,发现喷孔直径和喷孔所在处切向旋转速度对最大液滴直径的影响明显,而喷孔液流速度影响较弱。塔体通风气流速度在低于1.5m·s~(-1)时影响较小,高于1.5m·s~(-1)时影响显著。在一定范围内,可以通过调整喷孔直径和喷孔所在处切向旋转速度来提高液滴最大直径,但是液滴在造粒塔中下落冷却固化过程中可能出现二次分裂,根据临界Weber数发现塔式尿素造粒的最大直径约是4mm。  相似文献   

14.
用四种不同尺寸的陶瓷拉西环填料和四种物料系统(汽油──水、煤油──水、苯──水、二甲苯──水)在直径为50亳米、高为1.4米的硬质玻璃塔中分别研究了两相流速、脉冲强度,填料尺寸及物料性质对液滴大小和分散相液存量的影响。实验证明:随着脉冲强度的增加,液滴按两种方式进行破碎。本文讨论了液滴的破碎机理。当Re1<[(Re1)kp]的,液滴按剪切方式进行破碎。当Re1>[(Re1)kp]时,液滴按湍流破碎机理进行破碎。提出了对应于这两种破碎方式的液滴大小的准数关联式,同时也提出了同一条件下的分散相液存量的准数关联式。 在同一设备中,利用扩散模型,脉冲函数法测定了单相流动和两相流动时的纵向混合系数,并观测了流速和脉冲强度对纵向混合系数的影响。根据引起纵向混合的主要原因,对流速和脉冲的作用进行了分析和讨论。  相似文献   

15.
提出了一种结构简单、制作方便的套管型气隙式膜蒸馏组件,给出了膜组件的特性方程组,编制了膜组件性能模拟软件,对套管内直径、中空纤维疏水膜内直径、膜孔直径、膜孔隙率、料液流量、料液进膜组件温度6个关键参数对膜组件性能的影响进行了分析.以某热敏料液浓缩为背景,给出了膜组件的优化设计参数:中空纤维疏水膜内直径为0.700 mm,外直径为1.00 mm,套管内直径为5.00 mm,外直径为6.00 mm,长度为500 mm,膜孔直径为0.300μm,膜孔隙率为0.800,膜组件壳体内直径为50.0 mm.在此设计参数下,当膜组件料液流量为70.0 g/s、被预热液流量为70.0 g/s、料液进膜组件温度为80.0℃、被预热液进膜组件温度为50.0℃时,膜组件膜通量为11.2 kg/(m~2·h),产水速率为3.56 kg/h,热负荷为2.39 kW,热效率为0.955,非挥发性组分截留率可达99.9%.  相似文献   

16.
分散液体破碎形成液滴过程是液-液直接接触式制取流体冰系统的关键环节.基于图像采集与处理方法实验研究了非相溶冷媒(环境液体)中水(分散液体)喷射形成液滴特性,提出了分散液体破碎形成液滴的两种模式和3类射流破碎形状特征,获得了射流长度脉动和液滴平均粒径基于雷诺数的变化规律以及液滴形成的区域特性,确定了液滴粒径分布的经验分布函数.结果表明,随雷诺数的增加,分散液体破碎总是形成单液滴,其液滴形成模式由滴流发展为层流射流,且射流破碎形状由串珠单液滴向不规则液团转变,并演变为长条形液柱;在层流射流模式下,射流长度的脉动均具有随机和非周期特点,其脉动均值持续增长,液滴平均粒径则先减小后增加,其最小值出现在滴流向层流射流转变时.通过Pearsonχ2拟和优度检验,液滴粒径分布符合Rosin-Rammler分布函数,其显著性水平均达到0.03.  相似文献   

17.
液滴撞击液膜是喷淋冷却过程中的常见现象,利用欧拉多相流模型与连续表面力模型模拟了液滴撞击液膜的传热过程,其中液滴撞击液膜的飞溅规律与实验结果一致.分析了液滴撞击液膜飞溅半径与飞溅高度的变化规律,并进一步分析了撞击速度、液滴直径、液膜深度、壁面温度对液滴-液膜撞击传热量的影响,结果表明增加撞击速度、液滴直径、液膜深度有助于提高喷淋冷却的效果.  相似文献   

18.
基于Euler-Euler双流体模型及PBM模型,建立了吹氩钢包流场数学模型.此模型考虑了吹氩钢包内气液两相之间的曳力、升力、湍流扩散力和气泡的聚并和破碎等因素.研究了气泡聚并破碎对钢包钢液内含气率、气泡速度和混匀时间的影响,并与定气泡直径下的流场进行对比.数值结果表明:PBM模型的预测值更接近实验结果;钢包内气泡分布为中心区域气泡直径大,从中心到气液边界处气泡直径逐渐减小,气液两相区边界处直径最小;在钢包轴线上气泡速度先急剧增加然后缓慢减小,在接近液面处气泡速度又急剧减小.  相似文献   

19.
光滑平板降膜受表面张力和接触角的影响易收缩成溪流,导致传热表面出现干斑,为解决这一问题,提出箭型排布的矩形微槽平板。通过可靠的computational fluid dynamics(CFD)计算模拟两相流理论,建立三维非稳态平板降膜数学模型,研究了箭型排布的矩形微槽平板上的液膜流动特性,并探究了微槽宽度、深度及箭型夹角对液膜在平板上铺展效果的影响。结果表明:箭型排布的矩形微槽可有效增大液膜在平板横向的铺展面积,使液膜润湿面积增大,减少平板表面干斑;在120°箭型结构下,矩形微槽最优参数为宽0.5 mm,深0.3 mm,此时可将比湿面积由光板表面的62%~89%提高到84%~94%;低雷诺数时,120°箭型结构对液膜横向铺展引导效果显著,雷诺数增大时,90°箭型结构引导效果更好。  相似文献   

20.
波形板分离器中液滴二次携带碰壁模型   总被引:4,自引:0,他引:4  
分析了波形板气水分离器内二次液滴携带现象的机理,得出波形板内二次液滴主要来源于气流剪切液膜和液滴撞击液膜的结论,基于此建立了考虑二次携带现象的新的碰壁模型.新模型可以求出反弹后液滴的速度、液滴碰壁飞溅后所产生的二次液滴群的直径、数目、速度和角度。为建立波形板分离的数值模拟和进一步获得分离效率奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号