首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对传统生物特征身份识别技术易于破解的弊端,提出了心电信号身份识别技术。分析了心电信号身份识别的距离判别法则。结合马氏距离、小波距离、谱能量距离和相关距离算法,提出加权系数智能匹配算法。下位机利用双电极法采集心电信号,经串口送往上位机。Matlab软件平台下,编程实现心电信号数字处理和身份识别。通过对40个人的心电样本进行测试,获得了95%的识别结果。  相似文献   

2.
介绍了心电信号身份识别系统的设计方案。分析了双电极心电信号检测电路和心电信号小波距离身份判别算法。在Matlab软件平台下编程实现心电信号数字滤波、周期分割、样本建库以及身份识别。通过对34个人的心电样本进行测试,获得了91.2%的识别结果。  相似文献   

3.
基于小波的ECG信号噪声消除   总被引:9,自引:0,他引:9       下载免费PDF全文
人体心电信号在采集过程中掺杂着各种噪声信号。因而提出利用一种非线性的消噪方法,根据心电信号与噪声奇异点在小波变换下不同性质进行滤波。给出了具体的算法和试验结果。理论分析和实验表明,这种方法在改善信噪比同时又能保持相当主的时间分辨率,而且特别适合时变信号和突变信号的消噪。  相似文献   

4.
为了提高基于短时(1 s)心电信号进行身份识别的准确率,本文提出了一种残差块的一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)的短时心电信号身份识别方法。该方法采用快捷连接设计以解决深层卷积网络随着卷积层数增加而性能退化的问题,并通过增加卷积层数和卷积核数量来保证网络能够更充分地提取特征,进而提升网络的分类性能。本文方法在两个公开数据库心电数据库(electrocardiogram identification database,ECG-ID)和德国联邦物理技术研究院心电图诊断数据库(physikalish-technische bundesanstalt diagnostic ECG database,PTB)进行了实验,当采用一个心动周期(大约1 s)信号进行身份识别时,准确率分别达到了97.963%和99.359%。实验结果表明本文方法可以有效地提高短时心电信号的身份识别的准确率。  相似文献   

5.
设计并实现了采用非监督特征学习方法对模拟阅读事件相关电位实验中多名受试者脑电信号的特征提取,并对提取的特征向量进行了模式分类.实验中共采集5名受试者脑电信号,每名受试者的特征样本集由其接受模拟阅读靶视觉刺激后100400ms在通道PO3、O1、Oz、O2、PO4、P4、P8、CP6的脑电信号样本组成,各受试者样本集均含400个试次样本.非监督特征学习过程由含6个神经节的BP神经网络完成,后选用支持向量机作为分类器.对比了1试次,2试次、5试次、10试次样本叠加等几种不同情况下采用非监督特征学习方法提取特征的分类正确率.实验结果表明:采用多神经节人工神经网络对5名使用者5试次叠加信号样本提取的特征向量的分类正确率高于90%,显著优于对各单通道时域特征向量的分类正确率,该方法可为以脑电信号为特征的身份识别系统提供一种可行的特征提取方式.  相似文献   

6.
为抑制心电信号中存在的噪声干扰,以利于准确提取反映心电信号的特征信息,文章提出应用一维离散小波变换实现对心电信号的降噪处理方法.通过对MIT/BIH心电数据库中的心电信号进行仿真,研究结果表明,该方法能够有效地去除心电信号中的噪声,对实现心电信号特征信息的提取具有一定的实用价值.  相似文献   

7.
基于小波变换的ECG信号消噪   总被引:1,自引:1,他引:1  
以小波变换的多分辨率分析为理论基础 ,依据信噪在小波分析下的分离性 ,对体表心电信号 (ECG信号 )进行了消噪算法的设计与实现 ,并着重强调了其中双尺度预处理算法的重要性 .实验表明 ,本消噪算法不仅能实时有效地降噪 ,还能对原信号突变点进行定位  相似文献   

8.
小波分析和ECG信号的检测   总被引:1,自引:0,他引:1  
利用小波变换能处理多尺度多分辨的特点,将心电信号进行多尺度分解,把不同频带的信号显现在小波分解各个尺度上。特征尺度上准确定位QRS波及T波的起始点,从而获得人体心电信号(ECG)中的QT间值。人体心电信号具有非平稳性和干扰多的特点,利用小波分析对心电信号进行处理能够获得精确的QT间值,为临床诊断提供了更加准确的依据。  相似文献   

9.
心电信号中R波的小波探测法   总被引:4,自引:1,他引:4  
心电信号中的R波是心室除极时所产生的电位突奕,是典型的峰值奇异信号。笔者研究了小波变换对心电信号R波峰值奇异点的精确检测机理,分析了Mexican hat小波特有的时域特性,该小波具有任意阶连续性、对称性和指数衰减,具有零阶和一阶消失矩。因此Mexican hat小波基对R波具有良好的定位特性和分析精度。通过MIT/BIH(Massachusetts Institute of Technology/Boston's Beth Israel Hopital)心电数据库的测试和应用实例的验证,即使在有严重噪声干扰的情况下,该方法也很容易实现对R波的准确检测和精确定位,具有相当高的定位精度(定位误差不大于1个采样点,约80%能准确定位)和分析精度(不存在累计误差),同时具有较高的实时性,可以实现R波产时检测和分析。  相似文献   

10.
小波变换是一种线性运算,它对信号进行不同尺度的分解,可有效地应用于如信噪分离,提高时频两域的分辨率等。讨论小波变换用于心电QRS波形高频成份特征提取的方法。实验结果表明高频截止频率fH和W值,对于心肌缺血(冠心病)者其值普遍高于无心肌缺血(冠心病)者。并且揭示了急性心肌缺血时心电信息的高频成份动态变化的本质。  相似文献   

11.
人脸识别领域中常用Gabor小波系数表示人脸特征.然而,提取的人脸Gabor特征是高维数据,不可避免存在冗余和随机噪声的干扰.为了有效利用Gabor特征进行人脸识别,提出一种新的Gabor特征选取方法.首先计算训练集上的任两张人脸图像的Gabor特征差,生成类内空阃和类外空间.用单个Gabor特征训练筒单两值分类器,以其在类内空间和类外空间的分类错误率作为判据评价该Gabor特征的分类能力.在选取分类错误低的特征的同时还要再评估候选特征与已选特征间的互信息,这样优选出具有无冗余、低误差率的特征.最后对这些优选的Gabor特征进行主成分分析和线性判别分析完成人脸识别.在CAS-PEAL大型人脸数据库上的实验结果表明,所提出的方法不但可大大降低Gabor特征的维数,而且还有效提高了识别精度.  相似文献   

12.
网络身份认证是网络安全的第一道防护措施,以如何确定用户的身份并控制其对网络资源的访问作为研究对象,并且是网络安全体系的基础。针对网络身份认证的安全问题,研究基于人脸特征的认证模型,并对人脸识别的关键技术(PCA和SVM)进行讨论分析,使用RSA算法对传输过程中的数据进行加密。系统分析研究表明,该方法具有较高的识别率,系统具有可行性,能够应用于网络身份认证。  相似文献   

13.
以欧氏相似测度散布矩阵为特征评价准则,以特征向量为基因构造二进制染色体码串,研究了一种基于自适应交叉/变异算子模型的遗传搜索算法.测试结果表明,对于解域空间具有非连续、多峰、含噪声特征的一类特征选择问题,该算法具有很强的鲁棒性,且能够以满意的概率收敛于全局满意解.  相似文献   

14.
【目的】随着遥感技术迅猛发展,在影像解译过程中提取的信息越来越繁杂多样。为提高地物分类准确率,常加入更多的特征信息,而由此往往造成一定的信息冗余,导致分类效率甚至准确率降低。笔者利用随机森林(RF)和支持向量机(SVM)分类器,探索在遥感分类过程中保证分类精度的同时又能降低特征维度的方法。【方法】以吉林省安图县福兴林场部分区域为研究对象,利用2015年Landsat-8影像为数据源,提取光谱信息(红、绿、蓝、近红外和短波红外波段)、植被指数(NDVI、增强型植被指数、比值植被指数和裸土植被指数)、纹理(同质性、均值、二阶矩、方差、差异性、对比度、熵和相关性)和地形信息(坡度和坡向)共19个指标作为分类特征变量。以RF分类器估测的特征重要性进行特征选择为对照,分别以单个特征在RF和SVM两分类器中的分类准确率为依据进行特征选择,并对选取的特征进行主成分分析,与未做主成分分析的进行区分,再分别用RF和SVM分类器进行分类,评价分类精度,确定最优特征和分类器组合。【结果】①基于SVM单个特征分类准确率选取特征,对选取的特征进行主成分分析,再用RF进行分类,该方法与其他方法相比分类性能最好,当特征维度为5时,总体精度为0.86,Kappa系数为0.83; 与输入全部特征进行分类相比,不仅提高了分类精度,而且降低了特征维度,使分类效率得以提升。基于RF特征重要性选取特征的RF分类取得了较高的分类准确率,但特征维数小于7时,分类准确率波动较大; 在特征维数为4时分类准确率增至最大值(0.88),随后骤降为0.83,之后基本保持在此水平。而基于单个特征分类准确率选取特征,分类准确率变化较为平缓,如上所提最优分类性能方法的分类准确率波动范围基本在0.02。②基于单个特征在RF和SVM分类器中的分类准确率进行特征选择,在随后的分类过程中,SVM分类器分类精度总体高于RF。基于RF单个特征分类准确率选取特征的SVM分类,及基于SVM单个特征分类准确率选取特征并对选取特征进行主成分分析的RF分类,较仅利用SVM或RF单个分类器选取特征并分类的分类准确率更高。【结论】①基于单个特征分类准确率的特征选择方法,可在保证分类精度的同时降低特征维度,且在较低维度时,基于该方法选取特征的分类精度较基于特征重要性选取特征的分类精度更稳定。②基于单个特征分类准确率进行特征选择,不同分类器选取的特征有所差异,分类准确率也不同,利用多个分类器较单个分类器选取特征并分类的性能更好。③在中低维度时,RF分类器的分类准确率可能与特征输入顺序有关,对输入特征进行主成分分析有利于提高分类器的分类精度及稳定性。  相似文献   

15.
垃圾邮件过滤中特征选择方法研究   总被引:2,自引:0,他引:2  
文章对垃圾邮件过滤中的特征选择问题进行了研究,引入"词共现模型"考虑词语之间的语义联系信息,和传统的信息增益特征选择方法结合表示邮件,采用神经网络方法对邮件进行分类得到垃圾邮件过滤器.实验表明,文章提出的将词共现对和信息增益结合的特征选择方法能够提高垃圾邮件过滤的精确度.  相似文献   

16.
数据挖掘所面对的数据常具有属性冗余、包含噪音等特点,使得更注重训练数据质量的分类模型训练周期变长、精度下降。因此,如何选择有效的属性集以约减数据规模,提高分类模型性能具有重要意义。文章将IV模型用于属性选择,提出了基于IV指标的属性选择算法FS-IV,该算法仅需一遍扫描计算出所需的相关统计量,解决了传统属性选择方法处理较大规模数据时空效率不高的问题。实验表明,FS-IV属性选择方法时空性能良好,对冗余、噪音属性均有较好的区分能力,能够有效地约减数据规模。  相似文献   

17.
为了在实施分类工作时将不相关的、多余的、具有噪声的特征从问题表示中去除,以降低复杂度并得到可接受的性能,提出了一种基于多目标进化封装的特征选择方法。首先利用染色体选择的特征重新参数化人脸图像从而获得主动形变模型特征集;然后通过多目标遗产算法进行特征选择,在最小化特征子集基数的同时最大化判别容量;最后结合提出的综合适应度函数及k-近邻分类器完成人脸的识别。在Essex人脸数据库上的实验验证了所提方法的有效性,实验结果表明,相比其它几种较为先进的方法,所提方法不仅降低了表示的维度,同时提高了分类性能。  相似文献   

18.
在基于惯性传感器人体行为识别的研究中,特征选择的作用是挑选相关特征,以提高分类性能,去除冗余特征以降低计算复杂度。针对传统的过滤式特征选择方法仅使用一种相关度量系数筛选特征效果不佳的问题,提出一种改进的基于最大相关与最小冗余(mRmR)准则的特征选择方法。该方法在基于mRmR准则下,采用多种相关度量系数融合的方式,在考虑分类类别的条件下,分析待挑选特征与已选特征间的相关性对特征筛选可能产生的积极影响,以去除部分冗余、不相关特征,进而得到初选特征子集;然后利用二进制数对筛选后的特征编码,通过遗传算法搜索最优或次优特征子集。分别使用SVM和KNN分类器对7种日常行为进行分类。实验结果表明,与其他几种方法相比,该方法对实验分类的7种行为有最高的总体平均识别精度,通过SVM和KNN分类的各行为总体平均识别精度分别达到了97.02%和95.73%,与传统的mRmR方法相比,分别提高了13.72%和9.92%。  相似文献   

19.
鞋印图像识别是计算机视觉在公安一线工作中的一项重要应用。当前公安侦查工作中鞋印图像无法进行精准识别的问题制约了工作效率与质量的提高,归纳起来主要是囿于鞋印现场提取的复杂情况、鞋印花纹图样的复杂特征以及鞋印图像的残缺不全。针对残缺鞋印,为了进一步提高残缺鞋印检索结果,设计了一种融合特征筛选的双塔网络鞋印检索算法。一方面,在网络中引入分区策略,将鞋印图像分为足掌区和足跟区用两个特征网络分别提取图像特征进行融合;另一方面,选择融合ResNet网络和Transformer网络的新型卷积神经网络convNeXt网络作为骨干网络,加入注意力机制模块,提取最后一层卷积特征后用不同的特征筛选方法去除鞋印图像中的无关特征,最后拼接展开成为特征描述符进行相似度计算。在训练阶段,优化学习策略,将其作为完整的图像分类网络进行训练。实验结果表明,本文选取的网络模型优于其他卷积神经网络,在CSS-200和FID-300两个鞋印数据集上取得了较高的准确率。  相似文献   

20.
基于统计特征的人脸识别研究   总被引:1,自引:0,他引:1  
奇异值特征向量是用于图像识别的有效代数特征,但直接用奇异值特征向量做匹配进行人脸识别,识别率极低。通过对人脸图像奇异值向量和其对应的左右正交特征矩阵分析,发现图像的奇异值向量与图像的灰度范围具有相关性,即最大奇异值反映了图像灰度范围的位置,其他奇异值反映了灰度范围的宽度,而且与图像奇异值向量对应的左右正交特征矩阵能够表现图像轮廓的结构信息。基此,提出基于奇异值分解(singular value distribution,SVD)的基空间人脸识别算法,并通过ORL和ORL-IC数据库进行仿真,实验结果分析证明了图像的左右正交特征矩阵能够表现图像轮廓的结构信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号