首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 312 毫秒
1.
不同密度马尾松人工林凋落物及养分归还量的年变化特征   总被引:19,自引:0,他引:19  
在14年生的3种林分密度内,采用定期、定时、定点多样点收集器法,研究了林分凋落物及养分归还的年变化特征,结果表明:随着林分密度的增加,林分的年凋落物量为2 745.821~4 911.179 kg/(hm2.a);凋落物中养分的年归还量分别为:氮15.558~27.374 kg/(hm2.a)、磷1.437~2.900 kg/(hm2.a)、钾12.393~25.365 kg/(hm2.a)、钙10.850~22.056 kg/(hm2.a)、镁2.487~3.278 kg/(hm2.a)。凋落物及养分归还的季节动态变化趋势均为秋季最多,冬季以之夏季、春季最低,除镁外,各季节凋落物及养分归还量均随林分密度的增加而增加。  相似文献   

2.
【目的】掌握森林凋落物产量及组成的动态变化、凋落物养分归还量及凋落物分解特征,了解凋落物在森林生态系统养分循环中的作用。【方法】选择神农架巴山冷杉天然林和人工林,在样地内布置凋落物收集框和凋落物分解袋,通过1 a的连续观测,比较天然林和人工林凋落物产量及分解速率的差异。【结果】巴山冷杉天然林和人工林年凋落物总量分别为6 217.44和4 833.46 kg/hm2,天然林比人工林年凋落物总量高28.63%。凋落物中以落叶为主,天然林和人工林落叶产量分别占凋落物总量的55.24%和54.76%; 其次是落枝,分别占总量的22.18%和19.66%; 树皮及花果等其他组分含量相对较少,分别占总量的22.58%和25.58%。巴山冷杉林凋落模式为双峰型,分别在10月和次年6月具有明显高峰期,而在次年2月凋落量最小。天然林和人工林凋落物养分年归还量分别为77.84和54.47 kg/hm2,天然林比人工林凋落物年养分归还量高42.91%,5种大量元素年归还量大小顺序均为N>K>Ca>P>Mg。凋落物在初始阶段分解较快,天然林和人工林凋落物在最初2个月失重率分别达18.70%和11.35%。天然林和人工林凋落物分解常数分别为0.303和0.241,凋落物半衰期分别为1.70 a和2.57 a,而凋落物周转期分别为9.30 a和12.12 a。【结论】神农架巴山冷杉林凋落物产量较高,分解速率较慢,天然林凋落物对土壤的改良效果更好。  相似文献   

3.
【目的】探究氮沉降对杨树人工林土壤微生物群落特征的影响。【方法】以江苏省东台地区沿海杨树人工林为对象,采用Biolog ECO微平板技术,设置4种氮添加水平:N0(0 kg/(hm2·a))、N1(50 kg/(hm2·a))、N2(100 kg/(hm2·a))、N3(150 kg/(hm2·a))模拟不同浓度氮沉降,经过2 a生长季(5—10月)处理,测定杨树林土壤微生物群落碳源利用变化情况。【结果】N2处理可以增强杨树人工林土壤微生物对碳源的代谢能力,氮添加浓度过高则会产生抑制作用; 土壤中微生物对胺类和酚类利用程度表现出较大差异,其中,酚类在高浓度氮处理(N3)时利用程度最高,胺类在低浓度氮(N1)条件下利用程度最高; 硝态氮和平均颜色变化率(AWCD)、Shannon多样性均具有显著正相关性(P<0.05),微生物代谢水平及其结构变化受到硝态氮影响较大。主成分分析表明,PC1和PC2可以表示施氮对微生物群落代谢多样性产生的差异,其中,PC1的方差贡献率最大,碳水化合物、酚类呈负相关(碳源相关系数分别为-0.869、-0.780),氨基酸、羧酸呈正相关(碳源相关系数分别为0.702、0.821),是起主要分异作用的碳源; PC2涵盖了聚合物和胺类两种碳源大类,其中聚合物呈负相关(相关系数为-0.688),胺类呈正相关(相关系数为0.802)。【结论】氮添加会导致杨树人工林土壤微生物群落对碳源利用类型改变,土壤中硝态氮含量与微生物生长代谢及功能多样性呈显著正相关; 六大类碳源中碳水化合物、羧酸是影响土壤微生物群落功能多样性的主要碳源。 关键词:氮沉降; 土壤微生物; 碳源代谢; 群落功能多样性; 杨树人工林  相似文献   

4.
【目的】探究氮沉降增加对阔叶红松(Pinus koraiensis)混交林土壤微生物群落特征的影响。【方法】对阔叶红松林进行模拟氮沉降实验,设置对照(N0,0 kg/(hm2·a))、低氮(N1, 30 kg/(hm2·a))、中氮(N2, 60 kg/(hm2·a))和高氮(N3, 120 kg/(hm2·a))共4组处理,在实验样地内采集0~10 cm、≥10~20 cm土层中的土壤,测定土壤微生物生物量碳(SMBC)及土壤微生物生物量氮(SMBN)含量及变化。【结果】① 模拟氮沉降未改变SMBC、SMBN及SMBC/SMBN的垂直分布; SMBC、SMBN在生长季月动态曲线均为以8月中旬为峰值的单峰型曲线,SMBC/SMBN的曲线波动较大,0~10 cm土层以N0处理的结果波动范围最小(2.83~6.97)。② 模拟氮沉降仅对0~10 cm土层6、8月中旬的SMBC以及5、6、8月中旬的SMBC/SMBN有显著影响(P<0.05),而对SMBC、SMBN及SMBC/SMBN的生长季平均值无显著影响。【结论】模拟氮沉降对阔叶红松林土壤微生物生物量的影响仅在个别月份中表现明显,而对于整个生长季而言,更长时间的模拟氮沉降实验才可能对土壤微生物生物量产生明显的影响。  相似文献   

5.
阔叶红松(Pinus koraiensis)林是我国东北东部山区的地带性顶极植被,全球氮沉降增加可能影响其碳循环的各个过程。在2010年和2011年的5—10月,对典型阔叶红松林进行了模拟氮沉降实验。实验设置了对照(N0, 0 kg/(hm2·a))、低氮(N1, 30 kg/(hm2·a))、中氮(N2, 60 kg/(hm2·a))和高氮(N3, 120 kg/(hm2·a))4种模拟氮沉降处理,每隔半个月采用Li-6400-09便携式CO2/H2O气体分析仪对土壤呼吸速率进行测定,研究了氮沉降对典型阔叶红松林土壤呼吸的影响。结果表明:① 各处理土壤呼吸速率的季节变化与5 cm深度的土壤温度相似,均呈现出明显的季节变化趋势,最大值出现在6月中旬(3.84~4.55 μmol/(m2·s)),最小值出现在5月初(1.37~1.84 μmol/(m2·s)),土壤温度的变化可解释土壤呼吸速率季节变化的49.9%~69.2%。② 各处理的土壤呼吸速率与土壤温度呈指数相关(R2=0.499~0.692),土壤呼吸速率与土壤温度、湿度及其相互作用的回归模型可以解释各处理土壤呼吸速率52.2%~73.5%的季节变异; ③ N0、N1、N2和N3样地土壤呼吸温度敏感系数Q10值分别为2.10、1.93、1.97和2.01; ④ 各处理样地土壤呼吸速率的平均值分别为3.09、2.78、3.06和2.90 μmol/(m2·s),与对照样地N0相比,土壤呼吸速率和凋落物量无明显相关(P> 0.05)。  相似文献   

6.
以福建省武夷山亚热带常绿阔叶米槠林为研究对象, 开展氮添加实验。采用4个氮添加梯度(CK, N50, N100和N150, 分别表示氮添加0, 50, 100和150 kg/(hm2·a))模拟自然氮沉降变化, 探究氮添加对土壤有机碳及土壤呼吸的影响。结果表明, 氮添加对表层土壤(0~20 cm)总有机碳的影响不显著, 对颗粒态有机碳(POC)和矿物结合态有机碳(MAOC)两种不同碳组分含量的影响不同。其中, N100和N150处理分别使土壤POC含量显著上升110.7%和147.9% (p1 = 0.024, p2 < 0.001); 土壤MAOC含量则随氮添加量升高呈下降趋势, 但差异不显著。土壤呼吸速率的年际波动呈单峰式, 且在不同观测时间内, 各样地土壤呼吸速率对氮添加的响应不同。通过土壤呼吸速率与土壤温度的拟合方程计算, 得到2018—2020年CK, N50, N100和N150样地土壤呼吸年均碳排放量分别为1205.31, 1191.56, 1287.56和1128.61 g C/m2。其中, N50样地与CK样地无显著差异, N100样地显著上升6.82% (p<0.001), N150显著下降 6.8% (p<0.001), 即N100可以促进土壤呼吸年碳排放, 而N150对土壤呼吸年碳排放有抑制作用。  相似文献   

7.
喀斯特原生乔木林和次生林土壤氮矿化特征   总被引:1,自引:0,他引:1  
【目的】探究喀斯特森林土壤氮矿化特征及供氮能力。【方法】以贵州喀斯特原生乔木林和次生林为研究对象,采用树脂芯法,原位连续培养测定土壤氮矿化/硝化动态特征。【结果】①喀斯特原生乔木林和次生林土壤无机氮含量随培养时间延长存在明显的变化,NH+4-N含量呈先增加后减少再增加趋势,NO-3-N含量表现为总体增加趋势。NH+4-N是土壤有效氮的主要存在形式,其含量占土壤无机氮的84.57%~94.31%。②两演替群落土壤氮矿化速率呈“V”形变化,范围分别为-0.43~0.97 mg/(kg·d)和-0.91~1.43 mg/(kg·d); 硝化速率呈波动上升趋势,范围分别为0.21~0.49 mg/(kg·d)和0.03~0.31 mg/(kg·d)。③原生乔木林土壤无机氮含量、矿化速率、氨化速率和硝化速率均高于次生林。④原生乔木林土壤氮全年净矿化总量170.82 kg/(hm2·a),是次生林的2.48倍,两种林分土壤净硝化氮分别占净矿化氮的95%和100%。【结论】喀斯特森林土壤供氮能力较强,但土壤氮矿化过程中氮硝化占主导,表明土壤中植物可利用的氮素易于淋溶或挥发损失。  相似文献   

8.
【目的】阐明模拟氮(N)磷(P)沉降和凋落物处理对两种林型红松(Pinus koraiensis)林土壤有机碳(SOC)组分的影响,为该地区红松林的合理施肥提供参考。【方法】以黑龙江省伊春市带岭区凉水国家级自然保护区红松人工林与阔叶红松林为对象,每个林型设置3块20 m×30 m样地,每块样地间隔20 m,每块样地内布设12个样方,共计72个样方。每个样方实施两种处理:(1)凋落物处理:2017年10月进行该处理的去除(R)、添加(A)和原状(CK1)3个水平的试验,每个水平设定3个重复;(2)模拟氮磷沉降处理:2018年与2019年的5—10月,每月进行1次该处理的试验,分别使用(NH4)2SO4和(NH4)2HPO4作为氮源和磷源配置成不同质量浓度的液体肥,施肥量设置低剂量(L,N、P添加量均为5 g/m2)、中剂量(M,N添加量为15 g/m2,P添加量为10 g/m2)、高剂量(H,...  相似文献   

9.
在固定样地采用凋落物收集器收集并定期回收凋落物的方法,研究了海南岛北部海岸木麻黄防护林2008—2009年的凋落物产量及N、P、K养分归还动态. 结果表明:(1)木麻黄林年凋落物量为5.9844t/hm2,其中小枝凋落物量在年凋落量中占有最大比例,为88.99%;其次是杂物,为6.63%;最小是皮+枝,为4.38%. 木麻黄林总凋落物量和小枝凋落物量的月变化格局十分相似,皮+枝、杂物凋落物量月动态变化则比较平缓.(2)小枝中N、P、K 3种主要养分年归还总量为94.69kg/hm2,其中N归还量在年归还量中占有最大比例,为78.86%;其次是K,为18.71%;最小是P,为2.43%. N归还量月动态与总凋落物量月动态变化极其相似,P、K归还量月动态则比较平缓.  相似文献   

10.
施肥对无患子叶片养分动态及产量的影响   总被引:1,自引:0,他引:1  
【目的】在揭示不同施肥处理下无患子(Sapindus mukorossi Gaertn.)不同生长发育时期叶片养分变化及其对施肥响应的基础上,探究不同氮、磷、钾施肥水平对产量的影响及最优施肥配方,旨在为优化无患子合理施肥技术提供支撑。【方法】采用“3414”随机区组设计进行配方施肥试验,分析14个施肥处理对无患子叶片养分含量动态变化和产量的影响。【结果】无患子叶片N含量在花序抽生期(4月15至5月10日)和果实膨大期(6月25至9月1日)显著降低; P含量在花期(5月10日至6月10日)和果实膨大期(6月25至9月1日)显著降低; K含量从花絮抽生(4月15日)直到果实膨大期末(9月1日)均呈持续下降的趋势。无患子叶片N、P、K含量随施肥量的增加而增加,且氮肥和磷肥具有协同作用。无患子产量均随着氮、磷、钾施肥量的增加呈先增加再减少的变化趋势,无患子生长效果最佳的为N2P2K2(氮、磷、钾肥分别为600、300、500 kg/hm2)处理,单株产量可达2.71 kg,产量达2 254.28 kg/hm2,较CK显著提高了49.5%。【结论】无患子在施肥管理中采果期要注重氮和钾肥施用,花期肥要关注磷和钾肥的施用量,壮果肥要注重氮、磷、钾3种肥料的施用; 建议无患子最佳施肥量为氮肥773 kg/hm2、磷肥273 kg/hm2、钾肥557 kg/hm2。  相似文献   

11.
目的 森林冠层导致的穿透雨和树干茎流中离子通量的季节变化,能够影响森林生态系统生物地球化学循环,对物候变化明显的温带落叶林的影响更为突出。探究不同物候期(展叶期、盛叶期和落叶期)森林水化学过程,深入了解森林生态系统养分元素循环过程,为温带落叶林生物地球化学循环提供基础数据。方法 以东北林业大学城市林业示范基地内落叶松人工林为研究对象,在观测样地的中心位置十字交叉布设13个直径20 cm自制雨量筒,并选择5株落叶松安装树干茎流收集器,同时在林外布置1台翻斗式雨量计和3个自制雨量筒。在前期观察期(2015年5月1日—10月31日)每次降雨事件后,对林外降雨、穿透雨和树干茎流进行观测、取样,水样过滤酸化处理后用火焰原子吸收分光光度计测定Na+和K+质量浓度,探索冠层的物候变化对降雨分配过程中Na+和K+的质量浓度和净输入量的影响。结果 整个观测期间,林外降雨中Na+、K+的质量浓度分别为0.45 和1.89 mg/L,穿透雨中分别为0.44 和2.48 mg/L,树干茎流中分别为1.98和18.63 mg/L;大气降雨中Na+质量浓度在落叶期最高,盛叶期最低,K+质量浓度则在落叶期最高,展叶期最低;各时期穿透雨中Na+和K+质量浓度大小均为落叶期>盛叶期>展叶期;树干茎流中Na+和K+质量浓度大小均为展叶期>盛叶期>落叶期;生长季内林冠对降雨中Na+的截留量为0.252 kg/hm2,其中展叶期和落叶期的截留量分别为0.143和0.193 kg/hm2,截留率分别为30.63%和48.22%,盛叶期则表现为淋溶,淋溶量为0.083 kg/hm2;生长季内降雨对林冠中K+的淋溶量为0.903 kg/hm2,其中展叶期和盛叶期的淋溶量分别为0.999和0.157 kg/hm2,落叶期则为截留,截留量为0.254 kg/hm2,截留率为20.25%。结论 大气降雨经过森林冠层后离子质量浓度发生明显改变,且不同物候期、不同离子的变化强度不同。生长季内,兴安落叶松林对Na+总体表现为截留作用,对K+总体表现为淋溶作用。即落叶松叶片的物候变化能够影响大气降雨中Na+和K+的迁移。研究结果可为进一步探明我国温带森林生态系统伴随水文过程的养分循环过程及促进可持续经营管理提供借鉴。  相似文献   

12.
甘肃兴隆山不同演替阶段典型森林群落的凋落物动态   总被引:1,自引:0,他引:1  
【目的】分析不同演替阶段典型森林群落凋落物的量、组成特征及月动态,了解兴隆山森林生态系统碳贮量和养分循环状况。【方法】采用凋落物收集器法,对甘肃兴隆山森林演替阶段的3种典型森林群落针阔混交林(山杨(Populus davidiana)-白桦(Betula platyphylla)-青杄(Picea wilosonii)林)和暗针叶林(青杄-灌木林和青杄-箭竹(Fargesia nitida)-苔藓林)的凋落物量、组分、月动态进行了观测与研究。【结果】3种典型森林群落年凋落物量5 534.48~7 951.25 kg/hm2,大小排序为:山杨-白桦-青杄林>青杄-灌木林>青杄-箭竹-苔藓林,针阔混交林高于暗针叶林; 凋落量随森林正向演替的进行而不断减少。山杨-白桦-青杄林中以叶(44.91%)、杂物(20.53%)、枝(15.86%)、果(14.74%)为主,青杄-灌木林中以叶(41.22%)、杂物(23.58%)、枝(18.53%)、果(13.32%)为主,青杄-箭竹-苔藓林中以叶(37.48%)、杂物(27.51%)、枝(22.35%)为主; 在叶凋落物中,针阔混交林以阔叶为主,暗针叶林则以针叶为主。3种典型森林群落凋落量动态模式均为双峰型,但最高峰和最低峰出现时期有所不同,针阔混交林最高峰在10月,最低峰在7月; 暗针叶林最高峰在4—5月,最低峰在8—9月。针叶凋落量动态模式呈双峰型,高峰期出现在4月和10月; 阔叶、杂物、枝、果和花凋落动态模式呈单峰型,阔叶最高峰在10月,杂物、枝和果在4—5月,花在5—6月; 树皮凋落动态无明显变化规律。【结论】森林演替对凋落量及其凋落物组成影响明显; 随森林由阳性落叶阔叶林向阴性针叶林方向演替,森林年凋落量逐渐变小; 阔叶凋落量所占比例逐渐减小,而针叶所占比例逐渐增加。  相似文献   

13.
【目的】江苏宝华山地处亚热带北缘,青冈为其森林群落的重要组成树种。对青冈种群动态进行研究,可了解该地区常绿落叶阔叶混交林的演替动态,同时为森林保护策略的制定和人工林的演替促进提供理论指导。【方法】在宝华山设置1 hm2的固定样地,对样地内 432 株青冈个体进行定位并每木检尺; 根据胸径大小将其划分为 10 个径级,采用径级结构代替年龄结构探讨了该物种的种群动态; 采用点格局方法(Ripley’s K-Function)对其空间分布规律进行分析。【结果】青冈种群径级结构呈类倒“J”形,自然更新良好,属增长型种群; 个体的最高和最低死亡率分别出现在第 5 和第 6 径级,存活曲线接近于 Deevey-Ⅱ 型; 随研究尺度增加,青冈种群呈现由集群分布、随机分布到均匀分布的变化,而不同年龄段个体的变化规律略有差异,幼树、小树、中树和大树随空间尺度加大,变化规律同种群一致,老树则多呈随机分布。【结论】青冈在北亚热带常绿落叶阔叶混交林中有较强的适应能力,种群可长时间维持稳定的状态。为促进宝华山乃至整个宁镇山脉人工林向更加自然稳定的方向发展,建议人工抚育时,适当补植青冈幼苗,促进林分更新。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号