共查询到20条相似文献,搜索用时 15 毫秒
1.
Now that some genomes have been completely sequenced, the ability to direct specific mutations into genomes is particularly desirable. Here we present a method to create mutations in the Caenorhabditis elegans genome efficiently through transgene-directed, transposon-mediated gene conversion. Engineered deletions targeted into two genes show that the frequency of obtaining the desired mutation was higher using this approach than using standard transposon insertion-deletion approaches. We also targeted an engineered green fluorescent protein insertion-replacement cassette to one of these genes, thereby confirming that custom alleles of different types can be created in vitro to make the corresponding mutations in vivo. This approach should also be applicable to heterologous transposons in C. elegans and other organisms, including vertebrates. 相似文献
2.
3.
4.
5.
Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis 总被引:11,自引:0,他引:11
Clarke G Goldberg AF Vidgen D Collins L Ploder L Schwarz L Molday LL Rossant J Szél A Molday RS Birch DG McInnes RR 《Nature genetics》2000,25(1):67-73
The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2-/- mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1-/- mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1-/- mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1-/- rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration. 相似文献
6.
Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin 总被引:16,自引:0,他引:16
Moreira ES Wiltshire TJ Faulkner G Nilforoushan A Vainzof M Suzuki OT Valle G Reeves R Zatz M Passos-Bueno MR Jenne DE 《Nature genetics》2000,24(2):163-166
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD. 相似文献
7.
Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. 总被引:20,自引:0,他引:20
T Matikainen G I Perez A Jurisicova J K Pru J J Schlezinger H Y Ryu J Laine T Sakai S J Korsmeyer R F Casper D H Sherr J L Tilly 《Nature genetics》2001,28(4):355-360
8.
9.
10.
Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2 总被引:21,自引:0,他引:21
Bolino A Muglia M Conforti FL LeGuern E Salih MA Georgiou DM Christodoulou K Hausmanowa-Petrusewicz I Mandich P Schenone A Gambardella A Bono F Quattrone A Devoto M Monaco AP 《Nature genetics》2000,25(1):17-19
A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP). 相似文献
11.
Tsuji K Bandyopadhyay A Harfe BD Cox K Kakar S Gerstenfeld L Einhorn T Tabin CJ Rosen V 《Nature genetics》2006,38(12):1424-1429
Adult bones have a notable regenerative capacity. Over 40 years ago, an intrinsic activity capable of initiating this reparative response was found to reside within bone itself, and the term bone morphogenetic protein (BMP) was coined to describe the molecules responsible for it. A family of BMP proteins was subsequently identified, but no individual BMP has been shown to be the initiator of the endogenous bone repair response. Here we demonstrate that BMP2 is a necessary component of the signaling cascade that governs fracture repair. Mice lacking the ability to produce BMP2 in their limb bones have spontaneous fractures that do not resolve with time. In fact, in bones lacking BMP2, the earliest steps of fracture healing seem to be blocked. Although other osteogenic stimuli are still present in the limb skeleton of BMP2-deficient mice, they cannot compensate for the absence of BMP2. Collectively, our results identify BMP2 as an endogenous mediator necessary for fracture repair. 相似文献
12.
Lee JE Silhavy JL Zaki MS Schroth J Bielas SL Marsh SE Olvera J Brancati F Iannicelli M Ikegami K Schlossman AM Merriman B Attié-Bitach T Logan CV Glass IA Cluckey A Louie CM Lee JH Raynes HR Rapin I Castroviejo IP Setou M Barbot C Boltshauser E Nelson SF Hildebrandt F Johnson CA Doherty DA Valente EM Gleeson JG 《Nature genetics》2012,44(2):193-199
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction. 相似文献
13.
14.
The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression 总被引:8,自引:0,他引:8
Kim JC Badano JL Sibold S Esmail MA Hill J Hoskins BE Leitch CC Venner K Ansley SJ Ross AJ Leroux MR Katsanis N Beales PL 《Nature genetics》2004,36(5):462-470
BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration. 相似文献
15.
16.
P I Patel B B Roa A A Welcher R Schoener-Scott B J Trask L Pentao G J Snipes C A Garcia U Francke E M Shooter J R Lupski U Suter 《Nature genetics》1992,1(3):159-165
Charcot-Marie-Tooth disease type 1A (CMT1A) is an autosomal dominant peripheral neuropathy associated with a large DNA duplication on the short arm of human chromosome 17. The trembler (Tr) mouse serves as a model for CMT1A because of phenotypic similarities and because the Tr locus maps to mouse chromosome 11 in a region of conserved synteny with human chromosome 17. Recently, the peripheral myelin gene Pmp-22 was found to carry a point mutation in Tr mice. We have isolated cDNA and genomic clones for human PMP-22. The gene maps to human chromosome 17p11.2-17p12, is expressed at high levels in peripheral nervous tissue and is duplicated, but not disrupted, in CMT1A patients. Thus, we suggest that a gene dosage effect involving PMP-22 is at least partially responsible for the demyelinating neuropathy seen in CMT1A. 相似文献
17.
Ueki Y Tiziani V Santanna C Fukai N Maulik C Garfinkle J Ninomiya C doAmaral C Peters H Habal M Rhee-Morris L Doss JB Kreiborg S Olsen BR Reichenberger E 《Nature genetics》2001,28(2):125-126
Cherubism (MIM 118400) is an autosomal dominant inherited syndrome characterized by excessive bone degradation of the upper and lower jaws followed by development of fibrous tissue masses, which causes a characteristic facial swelling. Here we describe seven mutations in the SH3-binding protein SH3BP2 (MIM 602104) on chromosome 4p16.3 that cause cherubism. 相似文献
18.
Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus 总被引:62,自引:0,他引:62
Horikawa Y Oda N Cox NJ Li X Orho-Melander M Hara M Hinokio Y Lindner TH Mashima H Schwarz PE del Bosque-Plata L Horikawa Y Oda Y Yoshiuchi I Colilla S Polonsky KS Wei S Concannon P Iwasaki N Schulze J Baier LJ Bogardus C Groop L Boerwinkle E Hanis CL Bell GI 《Nature genetics》2000,26(2):163-175
Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the world's adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes. 相似文献
19.
The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein 总被引:9,自引:0,他引:9
Pusch CM Zeitz C Brandau O Pesch K Achatz H Feil S Scharfe C Maurer J Jacobi FK Pinckers A Andreasson S Hardcastle A Wissinger B Berger W Meindl A 《Nature genetics》2000,26(3):324-327
X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5-7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina. 相似文献
20.
The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. 总被引:2,自引:0,他引:2
J Bressler T F Tsai M Y Wu S F Tsai M A Ramirez D Armstrong A L Beaudet 《Nature genetics》2001,28(3):232-240
In mice and humans, the locus encoding the gene for small nuclear ribonucleoprotein N (SNRPN/Snrpn), as well as other loci in the region are subject to genomic imprinting. The SNRPN promoter is embedded in a maternally methylated CpG island, is expressed only from the paternal chromosome and lies within an imprinting center that is required for switching to and/or maintenance of the paternal epigenotype. We show here that a 0.9-kb deletion of exon 1 of mouse Snrpn did not disrupt imprinting or elicit any obvious phenotype, although it did allow the detection of previously unknown upstream exons. In contrast, a larger, overlapping 4.8-kb deletion caused a partial or mosaic imprinting defect and perinatal lethality when paternally inherited. 相似文献