首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
分析了水平井钻柱受力的复杂性和水平井钻柱优化设计的重要性,根据钻井工艺和钻柱安全对钻柱设计的要求,提出了水平井钻柱设计必须满足的四个约束条件,即;钻头加压,足够的钻柱强度,钻杆不发生屈曲及中性点不落在钻杆上。  相似文献   

2.
设钻柱为柔性杆,受用静水压力法计算泥浆对钻柱的受力影响,按不同的钻井方法及不同的钻井工序进行了钻柱的各井段受力分析与强度计算,并编制了相应的计算软件,对大港油田女MH-I水平井进行了实例计算。计算结果表明,该方法方便可行。  相似文献   

3.
分析了水平井钻柱受力的复杂性和水平井钻柱代化设计的重要性,根据钻进工艺和钻柱安全对钻柱设计的要求,提出了水平井钻柱设计必须满足的四个约束条件,即:钻头加压,足够的钻柱强度,钻杆不发生屈曲及中性点不落在钻杆上。分析了两种钻进方式的特点,提出了水平井钻柱优化设计的标准,即在四个约束条件下,在旋转钻进时使空重量最小;在滑动钻进时,使摩阻力最小.简述了水平井钻柱优化设计的方法.  相似文献   

4.
井眼内钻柱摩阻的三维和两组模型的研究   总被引:6,自引:0,他引:6  
根据定向钻井测斜计算方法中的两种假设,建立了钻柱摩阻的“斜面圆弧“和“圆柱螺线“两种三维模型,给出了详细的计算公式,并指出C.A.Johancsik等人所用的几何模型实际上是“螺线“而并非“圆弧“。实例计算也说明了这点。两种三维模型可根据实际的井眼情况进行选用。对于两维井眼内的钻柱摩阻问题,给出了更具普遍性和实用性的计算公式。  相似文献   

5.
为精确的描述水平井钻柱轴向受迫振动规律,本文以连续性波动理论为基础,考虑了钻柱连续特性、库伦阻尼及钻井液粘性阻尼作用和轴向振动工具对钻柱的位移激励,并采用等效粘性阻尼法对库仑阻尼进行线性化处理,建立了轴向振动工具作用下的水平井钻柱运动的动态解析模型;通过Burnett等人发表的轴向振动工具测试实验验证了本文所建模型,并利用数值模拟分析了轴向振动工具的频率及钻柱与井壁间摩擦系数对水平井钻柱轴向受迫振动的影响。结果表明:在一定范围内增加轴向振动工具的振荡频率可提高水平井钻柱的轴向受迫振动响应;钻柱与井壁间摩擦系数对水平井钻柱轴向受迫振动的影响随着钻柱长度的增加而降低。本文的研究方法和模型可为改善轴向振动工具在水平井作业中的作用提供理论指导。  相似文献   

6.
将水平井眼内的钻柱简化为两端固定的直梁,把求精确解和近似解的方法结合起来,求解钻柱的临界载荷、固定端内力和钻柱与井壁之间的接触力。利用编制的计算程序进行了实例计算,并将计算结果与通用的Danson公式的计算结果进行了对比。由于采用有同的力学模型,两者的计算结果也不相同。  相似文献   

7.
设钻柱为柔性杆.采用静水压力法计算泥浆对钻柱的受力影响,按不同的钻井方法及不同的钻井工序进行了钻柱的各井段受力分析与强度计算,并编制了相应的计算软件,对大港油田女MH-l水平井进行了实例计算.计算结果表明.该方法方便可行.  相似文献   

8.
钻柱横向振动是引发钻井事故的主要原因之一,水平井由于井眼弯曲严重,钻柱偏心,容易发生钻柱横向振动。以水平井钻柱单元为研究对象,应用有限元法建立了考虑钻井液影响的钻柱横向振动方程,得出了钻柱横向振动频率数学模型,分析了钻井液和钻井液密度对钻柱横向振动频率的影响规律。编制频率计算程序,结果比较符合现场实际,为计算钻柱共振转速提供依据,减少钻柱剧烈横向振动发生。  相似文献   

9.
将水平井眼内的钻柱简化为两端固定的直梁,把求精确解和近似解的方法结合起来,求解钻柱的临界载荷、固定端内力和钻柱与井壁之间的接触力.利用编制的计算程序进行了实例计算,并将计算结果与通用的Danson公式的计算结果进行了对比,由于采用不同的力学模型,两者的计算结果也不相同.  相似文献   

10.
钻柱在高曲率、长水平段的水平井中与井壁接触状态十分复杂,接触状态又直接影响钻进过程中钻柱的摩阻扭矩,进而影响井的延伸极限。因而,较准确、全面描述全井钻柱系统与井壁的接触状态是保证钻柱摩阻扭矩分析结果可靠的前提。基于ADAMS软件,结合力平衡理论、Hertz接触理论和相似原理,建立了与真实测试试验装置具有一致钻井参数的水平井全井钻柱-井壁动态非线性接触模型,分析了全井钻柱接触力分布情况,研究了起钻速度、下钻速度、钻压和转速对接触的影响规律。结果表明:接触力峰值出现在弯曲段;起、下钻速度均对弯曲段钻柱接触状态影响明显,速度相同时起钻比下钻时接触力大;增加钻压可减小全井钻柱的平均接触力;钻柱旋转会在水平段中前部出现小幅密集接触。仿真结果为钻柱摩阻扭矩测试试验装置提供了合适的钻柱与井壁的接触力测量位置,便于利用该装置开展钻柱摩阻扭矩等相关研究。  相似文献   

11.
本文在原苏联科学家M.M.Khasanow所建立的钻柱非线性振动数学模型的基础上,利用非线性科学领域的研究成果,进一步对其可能发生的混沌运动问题进行了讨论.文中用Melnikov方法求出了钻柱产生混沌运动的必要条件,为在钻井过程中适当选择参数以避免井下复杂情况的产生提供了又一理论参考依据.  相似文献   

12.
钻柱强度分析是钻具设计和选材的重要依据,对大中曲率水平并,抗弯强度是下部钻具强度分析中的首要问题.本文对弯曲并段内钻柱的抗弯强度进行了研究,给出了钻柱抗弯强度和极限转角的计算公式.提出了钻柱设计的极限转角准则:γmax<β1/ns.文中计算了塞平-1井二开和三开段内所用钻铤的极限转角,并进行了抗弯强度校核,结果表明,所选钻柱满足强度要求.  相似文献   

13.
中国南方海相页岩气区硬脆性页岩储层层理/裂缝发育,层理性页岩水平井钻井井壁坍塌问题已严重制约页
岩气勘探开发进程。为此,以线弹性井壁稳定力学模型和单一弱面强度理论为基础,建立了考虑页岩层理产状、层理
弱面强度、岩石强度、水平井方位、强度弱化(含水量)等因素影响的层理性页岩水平井井壁稳定模型。在此基础上定
量分析了层理产状和含水量对水平井井壁坍塌压力的影响。结果表明:坍塌压力与层理面产状、井眼方位关系密切,
地层倾角0°<θDIP<15°、75°<θDIP<90° 时有利于水平井井壁稳定;页岩层理弱化是导致井壁坍塌失稳的重要原因,无论
层理产状如何变化,随着层理含水量的增加,井壁坍塌压力迅速增加,坍塌压力增量约为4.30~22.62 MPa,含水量20%
时坍塌压力增幅可达100%。  相似文献   

14.
提出了水平井轨迹“曲率-并斜角”二段控制方法,即以初始控制点为起始.点,控制段终点为目标点,用两种造斜率控制井段,根据造斜特点决定中间点的井斜角大小,找出二造斜段的配伍曲率,从而满足控制要求.文中给出了中间点的选择和控制段的确定方法,并对塞平-1井作了实例分析.结果表明,该方法简便,灵活,实用性强.  相似文献   

15.
为探索用水平井技术提高安塞油田低压低渗薄油藏的单并产量,长戾油田与西安石油学院合作钻成了一口井深1658.27m、水平并段长度236.17m的水平井—塞平一井.该井采用新研制的AML低固相钻井液在现场应用中较好地解决了井眼净化、井壁稳定、润滑防卡水平井钻井液的三大难题,配合工程措施顺利地钻成了这口井.在应用中探索了水平井使用层流携屑的措施,实现了聚合物钻井液滤失性与泥饼质量的统一,解决了两性离子聚合物钻井液抑制能力不足的缺陷,探索出钻井液复合技术,对钻井液工艺有新发展.  相似文献   

16.
利用有限差分法和Newton迭代法 ,计算了斜直井段管柱螺旋屈曲临界力、沿螺旋段分布的管柱与井壁接触力以及后屈曲平均侧向接触力。分析了钻杆接头对水平井段钻柱屈曲临界力和弯曲应力的影响 ,提出了计算钻柱正弦屈曲临界力的新方法。结果表明 ,当轴向压力较小时 ,钻杆接头引起钻柱弯曲应力 ;当轴向压力较大时 ,接头会抑制螺旋屈曲的发生 ,降低钻柱的弯曲应力。另外 ,给出了水平井段钻柱出现反转的判别式。  相似文献   

17.
通过保角变换把水平井二维渗流场转换为直井二维渗流场,分析水平井二维稳定渗流场,推导出水平井二维稳定渗流场中的渗流速度参数方程,进而根据水平井产能公式和水平井二维稳定渗流场中的渗流速度参数方程优化水平井水平段长度和水平段方向。通过绘制水平井和垂直注水井不同方位组合的一注一采井网流线分布图,优化水平井和垂直注水井的最佳相对位置。结果表明,常规薄层油藏的水平井生产井段长度不宜大于100 m。应用水平井开发具有气顶或边水的油藏时,水平段应与油藏的构造线相平行,使水平井二维渗流场中的主流线方向避开气窜方向和边水锥进方向;在水平井和垂直注水井一注一采井网中,通过对比流场分布图明确垂直注水井的最佳位置在水平井的中垂线上。  相似文献   

18.
通过分析带扶正器套管柱的受力与变形,导出了套管柱在水平井中的摩阻计算模型。模型考虑了管柱单元体的刚性效应及套管扶正器的影响,同时对实测井斜数据进行平滑和插值处理。在克拉玛依油田的试验水平井HW701中用该模型开发的软件预测了完井套管柱下入的摩阻力和井口载荷,预测结果与实测结果吻合较好。  相似文献   

19.
苏里格气田发育河流相致密砂岩、低孔特低渗的物性特点迫切需要新型储层改造技术的应用,以增加压裂裂缝网络的密度及表面积,达到初期高产和长期稳产的目的。探讨了段内多缝体积压裂技术的关键因素,即每条裂缝的规模控制和裂缝间距的控制以及每次投送暂堵剂的数量。然后通过微破裂向量扫描四维裂缝影像的监测手段对压裂裂缝规模进行了监测。同时对比段内多缝压裂井和常规压裂井投产30 d内单位套压降下的产气量,体现出段内多缝体积压裂技术的明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号