首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用热重分析法在氮气气氛和不同升温速率下对油茶壳的热失重行为进行了研究。根据热重实验数据,采用atava-esták法,选取30种不同形式的动力学机理函数,并结合Ozawa积分法和Kissinger微分法的计算结果,筛选出最合适的动力学参数。结果表明:油茶壳的失重过程分为干燥、热裂解和炭化三个阶段。油茶壳在不同升温速率条件下的热解行为,热解机理符合Avrami-Erofeev方程(随机成核和随后生长),积分形式为[-ln(1-α)]3,平均活化能为79.59 k J·mol-1。  相似文献   

2.
干燥污泥与含水污泥的热解动力学研究   总被引:3,自引:0,他引:3  
为初步探寻含水污泥的热解动力学机理,在不同升温速率下利用热重-差热(TG-DTA)分析仪对干燥污泥和含水污泥进行了热分析对比实验.根据Coats-Redfern法,采用11种常见机理函数对不同升温速率下干、湿污泥的热解主体阶段进行线性模拟,并结合Malek法筛选出最为合理的机理方程,求解其动力学参数.结果表明:干燥污泥的TG曲线有1个明显失重段,而含水污泥的TG曲线则出现2个失重区间;高升温速率可在一定程度上促进反应的进行,有利于提高污泥有机质的转化率.  相似文献   

3.
利用热重分析法对稀酸水解木质素的热解行为进行了研究,探讨了这种工业木素在不同升温速率时的热解特性及升温速率对热解反应的影响,并根据微分热重曲线,建立了动力学模型,计算热解反应的动力学参数。结果表明:稀酸水解木质素的热解过程可以分为脱水、保持、剧烈失重和缓慢失重4个阶段,在低温区有一个强烈失重峰,根据Coats-Redfern法来描述热解过程并计算出稀酸水解木质素在不同升温速率下的热解动力学参数,其动力学模型可用2个一级反应表示。  相似文献   

4.
通过热重分析法对福城煤的热失重行为进行研究,并用Coats-Redfern法计算和比较不同升温速率下煤的热解反应活化能、指前因子.结果表明,升温速率对样品最终失重量没有明显影响;最大失重速率峰随升温速率升高向高温偏移;较低升温速率下热解反应受煤的结焦影响较大.福城煤热解可由3个独立的一级反应来表示;随着升温速率的增加,中间阶段活化能降低而第三阶段活化能增加,活化能与指前因子间存在动力学补偿效应.  相似文献   

5.
稀酸水解木素的热失重特性及其动力学分析   总被引:1,自引:1,他引:0  
采用热重分析的方法研究了稀酸水解木素在不同升温速率时的热解特性及升温速率对热解反应的影响,并根据微分热重曲线,建立了动力学模型,计算了热解反应的动力学参数.结果表明:200~450℃温度区间是水解木素热解的主要阶段;随着升温速率的增大,热重曲线向高温区移动,升温速率为10、20和30℃/min时,失重速率分别在311.9、323.8和338.1℃左右出现最大值,且微分热重曲线均只出现一个较大的失重峰.根据Coats-Redfern法,稀酸水解木素在不同升温速率下的热解可用两个一级反应表示,随着升温速率的提高,活化能有所降低,低温区稀酸水解木素的活化能在18.27~18.47kJ/mol之间,高温区的在74.45~84.37kJ/mol之间.  相似文献   

6.
杨晓刚  柴勇利  陈英 《河南科学》2012,30(8):1024-1028
通过热重分析法在不同升温速率(分别为10,30,50℃.min-1)下,采用非恒温热重法,以氩气为载气,流速60 mL.min-1,初温为30℃,加热终温为950℃.对粒径为80目的松木屑热裂解时的热失重行为进行了研究.结果表明:松木屑热解分为四个阶段,主要由预热干燥阶段、热解预热阶段、热分解阶段和热缩聚阶段4个阶段组成;生物质松木屑主反应阶段主要集中在180~600℃左右;随着升温速率的增大,松木屑原料热解的起始温度、热解最大速率所在的温度Tmax及热解终止温度都向高温处稍微移动.使用了Flynn-Wall-Ozawa积分法、Coats-Redfern积分法和Achar微分法对松木屑热解动力学参数进行求取,Flynn-Wall-Ozawa积分法得到的松木屑在热解过程中不同失重率下(0.1~0.80)的活化能都集中在142.35~220.12 kJ.mol-1范围内.按照Bagchi法对松木屑热裂解过程的最概然机理函数进行了推断.松木屑热裂解的最概然机理函数为15号机理函数随机成核和随后生长,反应级数n=2(Code:AE2),函数名称是Avrami-Erofeev方程.  相似文献   

7.
采用热重-质谱联用(TG-MS)研究了氮气气氛中花生壳在不同升温速率(5,10和20℃/min)下的热解行为,分析得到了花生壳热裂解过程产生的小分子气相产物(CO2,CH4,H2,CO)随温度和升温速率变化的释放规律.结果表明:花生壳热裂解过程分为四个阶段,升温速率越大,花生壳热解的失重温度区间越宽,最大热解速率峰越陡峭.应用Flynn-Wall-Ozawa法得出花生壳热裂解过程不同转化率(0.2~0.8)下的活化能在57.3~88.6 k J/mol范围内.结合Achar微分法和Coats-Redfern积分法确定了该反应过程的机理函数表达式,将30种常用机理函数一一代入得出花生壳热裂解机理的最概然函数为球形对称的三维扩散Jander方程,反应级数为2级.  相似文献   

8.
利用热天平对两种植物生物质(辐射松和稻壳)及其三组分半纤维素、纤维素和木质素分别在不同的升温速率下进行热重分析,调查这些样品随热解温度的失重情况以及热解动力学.随着升温速率的增加,半纤维素的DTG曲线表现出不同于其他实验样品的规律,即DTG曲线的峰值向低温区移动.使用Kissinger微分法、FWO法和Popescu法联合对热解数据进行分析,分别计算反应活化能E和指前因子A,以及最可几机理函数,其中Jander方程G(α)=123[1-(1-α)]为纤维素、辐射松和稻壳的最可几机理函数,反Jander方程123G(α)=[(1+α)-1]为半纤维素和木质素的最可几机理函数,可以较好地解决植物生物质及其三组分的动力学参数的求算.  相似文献   

9.
几种典型城市生活垃圾的热解特性和动力学分析   总被引:1,自引:0,他引:1  
针对四种不同的城市生活垃圾原料:木屑、稻草、橡胶和塑料在不同升温速率(10、20、30、40℃/min)下进行的热重分析试验,探讨生物质热解的影响因素。通过热重曲线分析城市生活垃圾的热解规律,并使用阿伦尼乌斯公式和Coats-Redfern积分法计算热解反应动力学参数。研究结果表明:几种典型的城市生活垃圾热解过程分三个阶段:干燥预热、快速失重和缓慢失重阶段。随着升温速率的增加,热解曲线向高温区移动,升温速率升高对热解过程总失重量影响不大;但是提高升温速率会加快热解反应过程。塑料相对于其他三种物质热解失重峰值温度高出120℃以上,塑料的活化能远大于其他三种物质,是四种城市生活垃圾最难热解的物质。  相似文献   

10.
采用热重分析法对黑液固形物样品的热解行为进行了研究,分析了黑液在不同升温速率时的热解特性,并与纯碱木素的热解特性进行对比.结果表明:黑液的热解过程可以分为4个阶段,且在低温区和高温区各有一个强烈失重峰,黑液中糖、有机酸以及碱金属盐对黑液热解特性存在一定的影响;而纯碱木素的热解过程由脱水、保持、剧烈失重和缓慢失重4个区域组成,热解开始较早,但持续时间较长.黑液的热解特性与纯碱木素的有一定差别.在实验的基础上,根据Coats-Redfern法描述了热解过程,计算了黑液和纯碱木素样品在不同升温速率下的热解动力学参数.动力学研究结果表明:黑液有机物热解的主要区域的反应级数为4,活化能和频率因子随加热速率的提高而轻微上升.  相似文献   

11.
毛竹酶解/温和酸解木素的热解特性   总被引:2,自引:0,他引:2  
为有效利用竹材,进行毛竹全组分和木素单组分热解行为的研究,提出单组分木素的热解规律及其对毛竹全组分热解的影响.采用热重分析法对毛竹酶解/温和酸解木素(EMAL)的热解行为进行了研究,并与丙酮抽提后毛竹全组分的热解行为进行了对比.探讨了升温速率和热解温度对毛竹EMAL热失重行为的影响.利用Coats-Redfern法描述毛竹EMAL的热解过程,建立了动力学模型并通过计算得到了热解动力学参数.研究结果表明毛竹EMAL热解反应的主要温度范围是150~600℃,其热解动力学模型可用一级反应表征,所得活化能随升温速率的增大而增加.  相似文献   

12.
生物质热解特性的热重分析   总被引:41,自引:1,他引:41  
用热重分析法对木屑(柳桉,水彬)和造纸厂污泥的热解行为及其动力学规律进行了研究。分析了3种样品在不同升温速率(10-30℃/min)和不同粒径(0.09-0.25mm)下的实验结果,发现样样品的非等温失重过程由脱水,保持,剧烈失重和缓慢失重4个阶段组成。当粒径小于0.25mm时,对热解过程影响不大。在实验的基础上,提出用来表征热解难易程度的热解特性指数P。用改进的Freeman-Carroll方法计算出样品的热解动力学参数,并根据实验结果和动力学(参数)补偿效应,建立起柳桉和水杉在不同升温速率下的动力学参数的预防方程。  相似文献   

13.
利用热重分析仪对褐煤、大豆荚及其混合物进行热解特性分析,研究添加大豆荚对褐煤热解过程的影响,并从动力学角度分析其热解机理。结果表明,大豆荚的添加有利于促进褐煤热解反应,使其热解过程向低温区移动,热解失重速率变快,与褐煤单独热解相比,在升温速率为10K/min下30%大豆荚与褐煤共热解的最大失重速率所对应的温度降低5.6℃,挥发分析出的终止温度提前17.51℃,其混合物热解反应指前因子A增大2.78min~(-1);大豆荚与褐煤混合物的热解速率随着升温速率的增大而加快,其热解过程符合一级反应动力学方程。  相似文献   

14.
Ca(OH)_2/CaO体系是非常有前景的热化学储能介质,其动力学研究是了解整个储能体系的反应速率及能量储、释速率的重要途径.文中采用热重分析法,对Ca(OH)_2在氮气气氛、不同升温速率下的热分解过程进行了探究.结果表明,Ca(OH)_2样品分别在623.15~773.15 K和873.15~973.15 K出现两个分解失重过程,且失重率分别接近21%和2%.应用多重速率扫描法对热分解过程进行动力学分析,发现所得动力学参数与反应转化率、升温速率以及选用的模型方法有关.最概然机理函数分析表明,实验条件下,Ca(OH)_2热分解动力学模型符合相边界反应的收缩圆柱体模型.研究还发现,在不同升温速率下,指前因子的自然对数和活化能之间都存在着线性关系.  相似文献   

15.
针对松木在不同条件下热解的失重规律,用热重分析法对松木的热解失重过程进行了系统研究。分析了松木样品在不同升温速率(5、10、20、30℃/min)和不同温度(200、250、300、350、400℃)条件下恒温4h热解的实验结果,发现松木样品的非等温失重过程由脱水、保持、剧烈失重和缓慢失重4个阶段组成,并且在相同条件下样品的质量对松木的热解过程有一定的影响。在恒温热解过程中,不同的恒温温度条件其失重曲线形态基本相似,但在200、250、400℃条件下恒温热解的热重曲线与300、350℃条件下恒温热解的热重曲线相比较较为平缓。研究结果,为研究松木的热解反应动力学模型及对其合理利用提供了一定的理论基础。  相似文献   

16.
采用固定床管式反应器,考察了热解温度对低次烟叶热解产物产率、组成的影响。利用热重分析仪,在不同的升温速率下对低次烟叶的热失重行为进行了研究,运用Coats-Redfern积分法、Flynn-Wall-Ozawa(FWO)积分法,结合双外推法确定其动力学机理函数。实验结果表明:随温度升高,热解油产率先增大,在400℃达到最大,为26.93%,然后开始下降;热解气产率不断增大;焦炭产率不断下降。热解油主要由酮类、酚类、呋喃类和含氮杂环化合物组成,热解气主要由CO、CO_2组成。低次烟叶的热解过程可以分为脱水干燥、快速热解和炭化3个阶段。主要热解区间第1段(T_0~T_(max))的最概然机理函数为D3(Jander方程),第2段(T_(max)~T_f)最可能的机理函数为D4(G-B方程)。  相似文献   

17.
采用热重分析仪对含油污泥在氮气气氛下的热解特性进行实验研究,考察了不同操作参数下污泥的热重曲线和微分热重曲线.采用微分法对实验数据进行回归拟合,确定污泥热解机理方程,并求出反应动力学活化能和频率因子.实验结果表明,污泥的有机物热解阶段分为200~450 ℃和450~900 ℃;升温速率对污泥热解影响不明显,升温速率不同时,每个阶段活化能变化不大,热解第二阶段的活化能小于第一阶段的活化能;污泥的干燥程度对热解动力学参数影响较小.  相似文献   

18.
PS塑料的热解动力学特性   总被引:2,自引:0,他引:2  
通过热重法对聚苯乙烯(PS)进行热分析,得到在氮气环境,热解温度为303~1073 K,3种不同升温速率下PS的热解实验数据.对实验数据用n阶模型进行模拟,得出热解动力学参数Ink0、活化能E和反应级数n.结果表明,PS在热解过程中只有一段明显的失重过程,升温速率对热解率影响较小,n阶模型能很好地预测热解实验数据.  相似文献   

19.
烟梗的热解特性分析   总被引:2,自引:0,他引:2  
用同步热分析仪对打叶复烤生产副产品烟梗在不同升温速率条件下进行了热解试验,并分析了热解过程及其动力学规律.结果表明,烟梗的热解包括脱水、剧烈失重和缓慢失重3个过程,10℃/min、15℃/min和20℃/min升温速率下的热解峰值温度和热解指数均随升温速率的增加而增大,采用改良的Coats-Redfern积分法进行动力...  相似文献   

20.
我国中药企业每年产生大量中药材废渣,其中大部分均作为废弃物丢掉,既造成资源损失和浪费,又污染环境.中药材废渣热化学利用是中药材废渣资源化利用的有效途径.本文以中药有效成分提取过程中产生的中药材废渣为研究对象,利用热重分析法(TGA)研究草本(柴胡)与木本(川木通)中药材废渣在不同粒径和不同升温速率下的热解特性差异及动力学规律.研究发现:柴胡药渣与川木通药渣表现出明显不同的热解特性,并从其内在金属元素的量变迁对其各自的热解特性给出了相应解释说明.最后,基于热重实验给出了柴胡与川木通药渣的热解动力学参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号