首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lamas-Linares A  Howell JC  Bouwmeester D 《Nature》2001,412(6850):887-890
Entangled photon pairs-discrete light quanta that exhibit non-classical correlations-play a crucial role in quantum information science (for example, in demonstrations of quantum non-locality, quantum teleportation and quantum cryptography). At the macroscopic optical-field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons, through the creation and amplification of the spin-1/2 and spin-1 singlet states consisting of two and four photons, respectively. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.  相似文献   

2.
Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.  相似文献   

3.
Keller M  Lange B  Hayasaka K  Lange W  Walther H 《Nature》2004,431(7012):1075-1078
The controlled production of single photons is of fundamental and practical interest; they represent the lowest excited quantum states of the radiation field, and have applications in quantum cryptography and quantum information processing. Common approaches use the fluorescence of single ions, single molecules, colour centres and semiconductor quantum dots. However, the lack of control over such irreversible emission processes precludes the use of these sources in applications (such as quantum networks) that require coherent exchange of quantum states between atoms and photons. The necessary control may be achieved in principle in cavity quantum electrodynamics. Although this approach has been used for the production of single photons from atoms, such experiments are compromised by limited trapping times, fluctuating atom-field coupling and multi-atom effects. Here we demonstrate a single-photon source based on a strongly localized single ion in an optical cavity. The ion is optimally coupled to a well-defined field mode, resulting in the generation of single-photon pulses with precisely defined shape and timing. We have confirmed the suppression of two-photon events up to the limit imposed by fluctuations in the rate of detector dark counts. The stream of emitted photons is uninterrupted over the storage time of the ion, as demonstrated by a measurement of photon correlations over 90 min.  相似文献   

4.
Ourjoumtsev A  Kubanek A  Koch M  Sames C  Pinkse PW  Rempe G  Murr K 《Nature》2011,474(7353):623-626
Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability of a single atom to produce quadrature-squeezed light, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, which is several orders of magnitude larger than in typical macroscopic media. This produces observable quadrature squeezing, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.  相似文献   

5.
量子光源综述   总被引:1,自引:0,他引:1  
量子密码通信是最近二十多年发展起来的一种新型通信技术,它利用量子特性来实现或增强通信的安全性。量子保密通信系统基于光量子信号的传输特性,因此如何获得稳定可靠的量子光源就成为实现量子保密通信的主要问题。文中介绍了量子通信中已有的几种光源(单光子光源、连续变量光源、纠缠态光源)的原理和相关实验,最后介绍了量子光源的应用,并对其前景进行了展望。  相似文献   

6.
Blinov BB  Moehring DL  Duan L  Monroe C 《Nature》2004,428(6979):153-157
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.  相似文献   

7.
Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a 'source' ensemble of 87Rb atoms at room temperature with another 'target' ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.  相似文献   

8.
Long-distance teleportation of qubits at telecommunication wavelengths   总被引:1,自引:0,他引:1  
Marcikic I  de Riedmatten H  Tittel W  Zbinden H  Gisin N 《Nature》2003,421(6922):509-513
Matter and energy cannot be teleported (that is, transferred from one place to another without passing through intermediate locations). However, teleportation of quantum states (the ultimate structure of objects) is possible: only the structure is teleported--the matter stays at the source side and must be already present at the final location. Several table-top experiments have used qubits (two-dimensional quantum systems) or continuous variables to demonstrate the principle over short distances. Here we report a long-distance experimental demonstration of probabilistic quantum teleportation. Qubits carried by photons of 1.3 micro m wavelength are teleported onto photons of 1.55 micro m wavelength from one laboratory to another, separated by 55 m but connected by 2 km of standard telecommunications fibre. The first (and, with foreseeable technologies, the only) application of quantum teleportation is in quantum communication, where it could help to extend quantum cryptography to larger distances.  相似文献   

9.
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.  相似文献   

10.
Santori C  Fattal D  Vucković J  Solomon GS  Yamamoto Y 《Nature》2002,419(6907):594-597
Single-photon sources have recently been demonstrated using a variety of devices, including molecules, mesoscopic quantum wells, colour centres, trapped ions and semiconductor quantum dots. Compared with a Poisson-distributed source of the same intensity, these sources rarely emit two or more photons in the same pulse. Numerous applications for single-photon sources have been proposed in the field of quantum information, but most--including linear-optical quantum computation--also require consecutive photons to have identical wave packets. For a source based on a single quantum emitter, the emitter must therefore be excited in a rapid or deterministic way, and interact little with its surrounding environment. Here we test the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity through a Hong-Ou-Mandel-type two-photon interference experiment. We find that consecutive photons are largely indistinguishable, with a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information.  相似文献   

11.
Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.  相似文献   

12.
Neder I  Ofek N  Chung Y  Heiblum M  Mahalu D  Umansky V 《Nature》2007,448(7151):333-337
Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle's wavefunctions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed; in these proposals it was shown that such correlations are a direct signature of quantum entanglement between the spatial degrees of freedom of the two particles ('orbital entanglement'), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements. Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source, yielded similar information to that obtained from auto-correlation (shot noise) measurements. The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light. It is based on the electronic Mach-Zehnder interferometer that uses edge channels in the quantum Hall effect regime. Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov-Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov-Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov-Bohm oscillations, suggesting orbital entanglement between the two electron beams.  相似文献   

13.
Maxwell's equations successfully describe the statistical properties of fluorescence from an ensemble of atoms or semiconductors in one or more dimensions. But quantization of the radiation field is required to explain the correlations of light generated by a single two-level quantum emitter, such as an atom, ion or single molecule. The observation of photon antibunching in resonance fluorescence from a single atom unequivocally demonstrated the non-classical nature of radiation. Here we report the experimental observation of photon antibunching from an artificial system--a single cadmium selenide quantum dot at room temperature. Apart from providing direct evidence for a solid-state non-classical light source, this result proves that a single quantum dot acts like an artificial atom, with a discrete anharmonic spectrum. In contrast, we find the photon-emission events from a cluster of several dots to be uncorrelated.  相似文献   

14.
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4?T), low-temperature (2.9?K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.  相似文献   

15.
When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.  相似文献   

16.
Schr?dinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory and in many quantum information processing tasks, including quantum computation, quantum teleportation and precision measurements. Recently, optical Schr?dinger 'kittens' were prepared; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schr?dinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schr?dinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.  相似文献   

17.
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7?±?0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.  相似文献   

18.
Kuzmich A  Bowen WP  Boozer AD  Boca A  Chou CW  Duan LM  Kimble HJ 《Nature》2003,423(6941):731-734
Quantum information science attempts to exploit capabilities from the quantum realm to accomplish tasks that are otherwise impossible in the classical domain. Although sufficient conditions have been formulated for the physical resources required to achieve quantum computation and communication, there is a growing understanding of the power of quantum measurement combined with the conditional evolution of quantum states for accomplishing diverse tasks in quantum information science. For example, a protocol has recently been developed for the realization of scalable long-distance quantum communication and the distribution of entanglement over quantum networks. Here we report the first enabling step in the realization of this protocol, namely the observation of quantum correlations for photon pairs generated in the collective emission from an atomic ensemble. The nonclassical character of the fields is demonstrated by the violation of an inequality involving their normalized correlation functions. Compared to previous investigations of non-classical correlations for photon pairs produced in atomic cascades and in parametric down-conversion, our experiment is distinct in that the correlated photons are separated by a programmable time interval (of about 400 nanoseconds in our initial experiments).  相似文献   

19.
为保证信息安全,提出了一种利用非最大纠缠态的量子信息隐藏方案.该方案建立在双粒子量子系统纠缠态的非定域性质的基础上,信息被编码于双粒子系统的整体态,然后,这两个粒子分配给两个人,他们只允许做定域操作而且彼此之间只能交换经典信息.这样,信息就被隐藏起来.相对于使用最大纠缠态的方案,该方案更容易实现.研究结果证明:该方案可以被用于网络上保存秘密信息.  相似文献   

20.
Zeilinger A  Weihs G  Jennewein T  Aspelmeyer M 《Nature》2005,433(7023):230-238
One hundred years ago Albert Einstein introduced the concept of the photon. Although in the early years after 1905 the evidence for the quantum nature of light was not compelling, modern experiments--especially those using photon pairs--have beautifully confirmed its corpuscular character. Research on the quantum properties of light (quantum optics) triggered the evolution of the whole field of quantum information processing, which now promises new technology, such as quantum cryptography and even quantum computers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号