共查询到20条相似文献,搜索用时 12 毫秒
1.
多尺度结构自相似性是指图像中存在大量相同尺度以及不同尺度相似结构的性质。本文提出一种基于多尺度结构自相似性的超分辨率重建算法,该方法通过图像旋转和金字塔分解将输入图像的先验信息附加到训练库中,并对样本图像块聚类,分别训练针对各类的多个字典。在图像重建阶段,自适应选择最优字典,并利用相似图像块间的关系建立非局部约束项重建图像。最后利用迭代反投影算法进行图像后处理,进一步提升图像的超分辨率重建效果。实验结果表明,与SCSR、SISR和ASDS算法相比,本文算法能够取得边缘更为清晰的超分辨率重建效果。 相似文献
2.
为利用多尺度信息重建超分辨率图像,提出多尺度卷积神经网络的图像超分辨率重建算法。算法利用不同尺度的卷积核提取图像特征,为图像重建提供不同大小的邻域信息;用瓶颈层融合多尺度特征图,增强网络非线性表示能力,降低中间层输出的维数,提高图像的超分辨率重建性能。多个测试集上的实验结果表明,多尺度卷积神经网络算法优于现有的单幅图像超分辨率方法。 相似文献
3.
为了解决图像超分辨率过程中训练步骤对海量数据的过于依赖、先验泛化能力不强等问题,进一步提高重建图像的质量,提出了一种新的图像超分辨率算法.首先对图像自相似性理论进行扩展,指出理想重建图像自相似性表现极为强烈,而受降质因素干扰的重建图像自相似性则会明显减弱.本文将这一规律视为先验,通过构建联合高斯混合模型对其进行描述,这使得每个重建图像片的自相似性都能够用一个特定的高斯分布进行刻画,最后算法以迭代的方式分片重建整幅高分辨率图像.在为每个高分辨率图像片建模的过程中,为了使训练样本具有较强的一致性,仅使用输入图像中与其空间位置相近的图像片进行训练.该算法避开了易于引入误差的最近邻域查找步骤,且成本函数存在解析解.实验表明该算法重建图像清晰、自然,重建结果中的显著边缘和纹理结构都得到了有效保持,正确的高频信息得到了明显恢复.在将BSD500部分数据集放大3倍的实验中,本文算法的PSNR平均值高于MMPM算法0.529 db,SSIM平均值高于MMPM算法0.030. 相似文献
4.
针对视频图像的特点,提出基于局部自相似性的视频图像超分辨率算法.该算法不依赖自然图像数据库作为样本块的图像来源,而是利用局部自相似性,通过在相关坐标邻域中搜索子图像块以实现高频补偿.设计上采样和下采样滤波器,以实现对高频补偿后的图像进行滤波从而产生最终的样本块,采用逐级放大、分多步组合达到视频图像的放大,从而实现了视频图像超分辨率算法.实验结果表明,对于视频序列图像,在主观视觉效果和均方根误差(root mean square error,RMSE)、结构自相似性算子(structural similarity index measurement,SSIM)等方面,算法能显著地提高其分辨率,取得很好的效果.同时,对视频图像利用局部自相似性方法,减少了图像块的检索时间,降低了算法运算量. 相似文献
5.
文中构建了超分辨率重建图像的一般框架.在对图像模糊的不确定性和复杂性作一定限制条件下,讨论采用最小二乘方规整化方法重建除运动外其它因素引起降质的低分辨率图像;并进一步提出了采用改进的递归最速下降迭代算法实现多帧图像的超分辨率重建.计算机模拟结果表明,该方法具有较好的重建图像质量. 相似文献
6.
针对目前数字图像采集传输过程中因受环境干扰出现低像素的图像,导致图像重建效果较差的问题,提出了基于多尺度残差的数字图像超分辨率重建算法。首先,采用双边滤波算法完成数字图像的去雾处理;其次,分类数字图像的亮度特征信息和色彩信息,采用距离阈值去噪方法分别对其进行去噪处理;并且设置多个尺寸的卷积核,将其引入图像特征提取过程中,获取数字图像特征,对其展开反向投影操作,在残差学习思想的基础上连接升采样和降采样过程提取的特征,实现数字图像超分辨率重建。实验结果表明,所提算法对图像重建的结构相似度高、峰值信噪比(PSNR:Peak Signal-to-Noise Ratio)高、重建效果好。 相似文献
7.
为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果. 相似文献
8.
超分辨率重建技术可以提高图像质量,使原图像具有更丰富的细节信息。针对现有的超分辨率重建算法存在提取特征单一、不利于对图像信息进一步提取的问题,提出了一种基于多尺度特征融合的超分辨率重建算法。采用多特征提取模块获取更多浅层信息,并在网络中添加密集连接结构,增强特征的传播,减少相关参数计算,减轻梯度消失问题。在Set5和Set14基准数据集上进行了测试,并在电力巡检数据集上进一步验证了算法的有效性。与主流的超分辨率重建方法进行了对比,实验结果表明,该方法生成的图像有更加丰富的细节信息,能够有效地改善图像质量,峰值信噪比与结构相似度值较其他主流算法均有一定的提高。 相似文献
9.
提出了一种基于自商图像(Self Quotient Image-SQI)的超分辨率图像重建算法.该方法首先利用SQI提取光照不变量作为图像特征,并假设光反射分量具有分段平滑的特性,近似认为每一个小的图像块具有相同的增益系数;然后在流形学习的框架下,借助局部线性嵌套的思想构建高分辨率图像和低分辨率图像块间的关系,从而实现了超分辨率重建和图像增强.仿真结果表明,该算法有效地克服了传统方法受光照因素影响的缺点,在提高分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果. 相似文献
10.
针对超分辨率重建图像质量与计算成本难以平衡这一问题,提出了一种基于神经架构搜索的高效超分辨率重建算法——NASESR.首先,采用全局残差学习,将搜索的部分限定在网络的非线性映射部分;其次在该部分加入了下采样结构用于减小特征图尺寸,降低计算成本;第三,建立轻量级的搜索空间和联合奖励用于搜索最优网络结构;第四,将搜索分为宏... 相似文献
11.
惠卫华 《江南大学学报(自然科学版)》2013,12(3):299-304
基于超分辨率复原问题,提出一种新的基于偏微分方程(PDE)的多幅图像超分辨率复原算法。该算法根据图像局部特征的不同,引入先验约束项,通过梯度下降法求解图像超分辨率复原的正则化问题。算法分为基于PDE的平滑扩散、锐化增强和保真约束3部分。实验结果表明,该算法能够有效地提高复原图像的主观视觉效果和客观保真度。 相似文献
12.
现有的深度超分辨率重建模型,用堆叠多个相同模块的方式获取具有更高精度的重建结果,但未能充分考虑各层特征间的上下文关联信息.提出一种基于非局部多尺度融合的图像超分辨率重建模型.该模型采用3种模块:非局部模块、多尺度融合模块和宽激活残差模块.其中,非局部模块用于获取图像的全局特征,关注目标的核心区域;多尺度融合模块用于融合... 相似文献
13.
基于神经网络的图像超分辨率方法往往存在重建图像纹理结构模糊、缺失高频信息的问题。为了解决该问题,在SRGAN的基础上提出一种多尺度并联学习的生成对抗网络结构,其中生成模型由两个不同尺度的残差网络块组成,首先对提取的低分辨率图像通过两个子网络的多尺度特征学习,然后使用融合网络进行残差融合,融合不同尺度高频信息,最终生成高分辨图像。在Set5、Set14、BSD100基准数据集以及SpaceNet卫星图像数据集上的实验结果证明了该算法在恢复低分辨率图像的细节纹理信息具有良好效果。 相似文献
14.
根据图像的降质模型,基于凸集投影(POCS)原理,结合降质图像模型,提出一种使用中值滤波初值处理的高效POCS单帧图像的超分辨率重建方法.计算机仿真结果表明,和双线性内插、经典POCS方法比较,改进后的该方法重建图像信噪比平均提高2.1 dB和1.1 dB. 相似文献
15.
SRGAN是一种基于生成对抗网络的超分辨重建方法,其生成的高分辨率图像质量较传统方法有着明显提升,然而SRGAN存在着训练过程不稳定,图像浅层特征未充分使用等问题,很大程度上影响到了生成图像的质量。本文提出了一种特征增强改进的SRGAN模型,该模型使用信息蒸馏块进行特征纹理信息的增强,并消除图像特征中的冗余信息。此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证了GAN网络训练的稳定性。本文基于4倍放大因子的超分辨重建任务,在BSD100数据集上进行实验结果的质化评价和量化评价。实验表明,本文方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果。 相似文献
16.
为提高重建图像的质量,详细表达图像高频细节信息,提出了一种改进的在线字典学习图像超分辨率重建算法.该算法在稀疏重建的字典训练阶段,采用在线字典学习以获取最优的超完备字典.在稀疏系数表示阶段,考虑图像多尺度间的冗余信息,构造L1范数正则项补偿对,抑制稀疏系数噪声提高重建效果.实验表明,该算法可更好地恢复图像细节,在客观评价和主观视觉感知上图像的重建质量均有所提高. 相似文献
17.
基于RGB三通道的超分辨率视频重建算法对彩色视频进行处理将导致算法的计算量过大,不利于其在彩色视频实时处理中的应用。针对这一缺点,本文基于核回归函数提出了一种高效的彩色视频超分辨率重建算法,该算法只需要对亮度分量进行超分辨率重构,在增大视频序列重构信息量的同时,大幅降低超分辨率重建算法的计算量,更适用于彩色视频的实时超分辨率重建场景中。 相似文献
18.
针对目前基于深度学习的超分辨率重建图像存在的纹理等高频信息丢失问题,提出了多尺度残差生成对抗网络的图像超分辨率重建算法。首先,使用Dense-Res2Net模块替代SRGAN生成网络中原本的残差模块,并且组合特征压缩与激发网络(SENet)从多个尺度自适应地提取浅层特征信息。其次,引入全变分正则化损失(TV loss)指导生成器训练。最后,使用Wasserstein距离优化对抗损失,提高网络训练稳定性。实验结果表明,该算法重建出的图像在视觉效果上保留了更加丰富的高频细节,与当前主流超分算法相比,该方法不仅有更高的峰值信噪比(PNSR)与结构相似性(SSIM),且学习感知图像块相似度(LPIPS)的分数上均优其他算法。 相似文献
19.
《南京师大学报(自然科学版)》2017,(1)
传统的基于压缩感知的超分辨率重建算法将图像看作单尺度,并没有考虑不同尺度的图像块可能包含不同的判别信息.为了有效利用遥感图像的尺度特性,提出了一种多尺度压缩感知框架下的遥感图像超分辨率重建算法.首先通过图像块聚类构建多尺度训练样本集,接着运用Fisher判别准则学习包含遥感图像类别信息的判别字典,然后根据压缩感知中测量矩阵的构造方式估计低分辨率图像的获取过程,最后结合判别字典依次重建多尺度模式下的各子区域图像.实验结果证明了将多尺度压缩感知引入图像超分辨率重建的有效性,提出的算法在视觉效果和评价指标上均优于现有的几种算法. 相似文献
20.