首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《科学通报》2021,66(23):2971-2990
金属锂负极因其超高的理论比容量和极低的氧化还原电势成为下一代可充电池的"圣杯"负极材料,高能量密度的锂金属电池有望成为后锂离子电池时代最具商业应用潜力的电化学储能系统.但是负极锂枝晶的生长带来了极大的安全隐患,"死锂"的积累和电解质的过度消耗造成了电池循环稳定性的下降,这些严重阻碍了锂金属电池的商业应用.近年来,国内外学者通过电极结构设计、固态电解质、隔膜修饰、保形包覆、添加剂等手段有效抑制了枝晶的生长.本文着重介绍了功能性添加剂和保形包覆两种策略的成功实例,通过在负极-电解质界面处注入富氟成分或引入亲锂性基团以均匀化锂离子流,从而实现稳定且无枝晶的负极循环,为锂金属电池的发展提供有益的见解.  相似文献   

2.
经过10多年的筛选,现在普遍看好的动力电池有氢镍电池、铁电池、锂离子和锂聚合物电池.氢镍电池单位重量储存能量比铅酸电池多一倍,其他性能也都优于铅酸电池,但目前价格为铅酸电池的4~5倍,正在大力攻关使其降下来.铁电池采用的是资源丰富、价格低廉的铁元素材料,成本得到了大幅度降低,已有厂家采用.锂是最轻、化学特性十分活泼的金属,锂离子电池单位重量储能为铅酸电池的3倍,锂聚合物电池单位重量储能为铅酸电池的4倍,而且锂资源较丰富,价格也不很贵,是很有希望的电池.  相似文献   

3.
锂离子电池的发展现状及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
王鹏博  郑俊超 《自然杂志》2017,39(4):283-289
锂离子电池具有比能量高、无记忆效应、工作电压高以及安全、长寿命的特点。本文回顾了锂离子电池的发展历史,分析了锂离子电池的工作原理,总结了锂离子电池的特点,综述了目前锂离子电池常用的正、负极电极材料和电解质,最后分析了锂离子电池目前存在的问题并对其未来的发展进行了展望。  相似文献   

4.
金属-有机框架(MOFs)材料具有容易制备、高孔隙率、容量大、种类丰富等优点,在能源储存和转化领域受到广泛关注,是合成高性能电极材料的潜在模板.本文介绍MOFs直接应用于锂离子电池正极材料的研究进展,重点综述了MOFs衍生材料(硫化物、氟化物、聚阴离子型化合物或锂的过渡金属酸盐)的制备方法,及其在锂离子电池正极中的应用.最后总结MOFs及其衍生材料在锂离子电池正极材料的应用方向及发展前景,为新型电极材料的开发提供参考经验.  相似文献   

5.
正随着人工智能时代的来临,消费电子器件便携性要求的提高以及电动汽车使用空间的限制,使锂离子电池的发展面临"空间焦虑",即体积能量密度已成为锂离子电池发展的当务之急.高(质量、体积)比容量的硅基负极是最有潜力部分取代商用石墨的锂离子电池用新一代负极材料,但在嵌锂过程中会发生巨大的体积膨胀,导致固态电解质界面(SEI)破裂及电极粉化等问题,使得容量迅速衰减.  相似文献   

6.
随着锂离子电池从便携式电子设备到大规模储能系统的应用,开发具有高能量密度、功率密度和长循环寿命的锂离子电池成为研究的重点之一.而锂离子电池的性能很大程度上取决于电极材料.目前,广泛使用的无机电极材料普遍存在容量提升有限、能耗高和成本高等缺陷.因此,开发新型电极材料至关重要.与传统无机材料相比,有机电极材料具有结构可控、资源丰富、清洁环保和成本低廉等优势,近年来得到了广泛关注.其中共轭羰基化合物以羰基为活性基团,因其结构多样、理论容量高和反应动力学快而被广泛研究.本文从正极、负极、全电池三方面,综述了目前国内外已经开展的关于羰基化合物作为锂离子电池电极材料的研究工作,评述了这些化合物的电化学性能及其具备的优势和存在的不足,并指出了有机化合物作为锂离子电池电极材料需要解决的关键问题.  相似文献   

7.
智能电网储能用二次电池体系   总被引:1,自引:0,他引:1  
陶占良  陈军 《科学通报》2012,(27):2545-2560
储能用二次电池体系在风能、太阳能等可再生能源发电、智能电网建设等方面有着广阔的应用前景.本文对铅酸电池、钠硫电池、液流电池和锂离子电池的工作原理、特点、国内外研究现状、应用情况及发展趋势进行了综述,提出了制约储能电池发展瓶颈问题,储能电池需关注长寿命、低成本、高安全、大容量、高功率、快速充放电和环境适应性等性能指标,展望了储能二次电池体系未来的发展趋势.  相似文献   

8.
闻雷  陈静  罗洪泽  李峰 《科学通报》2015,(7):630-644
随着具有变形功能的移动电子设备的出现和发展,为其供电的可变形、柔性锂离子电池近年来受到广泛关注.柔性锂离子电池一般指具有可逆弹性变形能力,同时可正常工作的锂离子电池.按照变形难易程度,大部分研究中的柔性锂离子电池,均指可弯折柔性锂离子电池.本文总结了石墨烯在可弯折柔性锂离子电池领域的进展情况.石墨烯具有很高的电子电导率,可将石墨烯附着于高分子、纸、纺织布等柔性基底上,利用基底提供柔性支撑、力学性能,石墨烯提供导电网络,形成石墨烯/柔性基体复合结构.利用石墨烯的二维柔性结构及表面官能团,与其他材料复合,能够制备出一体化石墨烯复合柔性电池电极.石墨烯柔性复合材料作为电极时,能够提高电池的整体能量密度,因此具有更广阔的发展前景.本文同时介绍了柔性锂离子电池的力学特性和电化学性能表征方法,并对柔性锂离子电池的未来发展方向进行了预测.柔性锂离子电池发展趋势是提高其变形能力,并赋予柔性锂离子电池一定的可拉伸性能,以使其适应各种复杂应用;新型柔性锂离子电池也将具有自修复和快速充电能力;未来同时将研究喷涂或打印等新型柔性电极的制备和器件优化设计.虽然仍然存在尚待解决的问题,石墨烯柔性锂离子电池经过适当的电化学性能和力学性能改进,将在移动电子领域得到广泛应用.  相似文献   

9.
锂硫电池具有高比能、低成本、环境友好等优点,是最具发展潜力的下一代二次电池体系之一.受限于硫的本征绝缘性、多硫化锂的穿梭效应、界面副反应、锂枝晶生长等问题,锂硫电池的商业化应用还面临着诸多挑战.本文结合本课题组近年来在锂硫电池领域的相关研究进展,提出了硫正极反应机制的调控、电极结构设计、电解质改性优化策略,实现了锂硫电池综合性能的协同提升;最后对锂硫电池的发展进行了展望.  相似文献   

10.
邹波波  刘芯言  彭翃杰 《科学通报》2022,(24):2906-2920
随着社会发展对储能系统的要求不断提高,锂硫二次电池因其低成本、高能量密度和环境友好等优点,近年来受到广泛关注.但是多硫化物的穿梭效应和缓慢的氧化还原过程限制了硫正极的活性物质利用率,同时导致其快速的容量衰减,阻碍了其实际应用.为了解决这些问题,研究者采用“锂硫电催化”模型体系以缓解穿梭效应并促进多硫化物的转化动力学.本文系统总结了包括非均相与均相催化体系在内的锂硫电池电催化材料和模型体系的设计原理及最新研究进展,展望了未来锂硫二次电池电催化研究的主要挑战和发展机遇.  相似文献   

11.
锂硫电池具有理论能量密度高、硫资源丰富等特点,被认为是下一代极具前景的储能电池体系.但锂硫电池中严重的多硫化物“穿梭效应”以及迟缓的反应动力学等问题制约其进一步发展.近年来,将非均相纳米电催化剂引入锂硫体系,在抑制“穿梭效应”及提升反应动力学方面取得了显著效果.本文对常见的非均相电催化剂调控策略进行了清晰的分类,总结了最新的研究进展,分析了不同调控策略对于促进多硫化物转化的内在机制,最后对未来锂硫电池电催化剂的发展进行了展望.  相似文献   

12.
高能量密度、长寿命及高安全等性能是锂离子电池研究持续追求的目标和发展方向.电极/电解质界面稳定性是制约高比能量长寿命锂离子电池实用化的关键因素.本文针对发展高电压/高能量密度电池体系所面临的挑战,重点总结回顾了本研究团队在过去15年里在正极/电解液界面调控、负极/电解液界面调控、高安全阻燃电解液技术开发,以及固体电解质...  相似文献   

13.
曹学成  杨瑞枝 《科学通报》2019,64(32):前插8,3340-3349
锂-空气电池是一种具有高能量密度、环境友好等优点的最具潜力的下一代储能电池体系.然而,其正极电化学反应缓慢的动力学过程导致了锂-空气电池充/放电过电位高、能量效率低、倍率性能差,而且催化剂的不稳定性也导致电池循环寿命短.开发高效且稳定的正极催化剂材料是解决上述问题的主要途径,也是锂-空气电池未来研究的重点.本文总结近几年来锂-空气电池正极催化剂的研究进展,并结合本课题组研究工作,以催化剂种类为切入点,深入综述及讨论了锂-空气电池催化剂的发展和存在的问题,并且展望了未来锂-空气电池正极催化剂的设计思路及对催化剂表界面反应机理的研究,对未来开发出高效、实用化的锂-空气电池具有重要的意义.  相似文献   

14.
张力  Rashid Arif  李莎  张桥保  晏成林 《科学通报》2019,64(32):前插4,3285-3296
锂硫电池是高能量密度二次电池的重要体系.但硫材料固有的绝缘属性以及硫正极在电化学循环中特殊的"固-液-固"反应历程,易导致材料利用率低、极化严重、溶解性多硫化锂"穿梭"以及剧烈体积变化等负面影响,造成高负载硫正极性能发挥和稳定循环的极大困难.近年来,作为非活性组分的黏结剂在锂硫电池中被赋予了丰富的功能,如有效捕捉溶解性多硫化锂以及维持电极/导电结构长期循环稳定性等,极大地推动了高负载硫正极的发展.本文从高负载硫正极用黏结剂的关键作用、研究现状、作用机制原位解析、现存挑战以及未来发展方向等方面,重点归纳和阐述近年来高负载硫正极用功能性黏结剂的重要研究进展.  相似文献   

15.
锂离子电池是能源领域的革命性创新,具有能量密度高、循环寿命长等优点,推动了新能源、新能源汽车等新兴产业的跨越式发展,并应用于卫星、无人机等国家战略领域,成为世界各国竞争的战略高地.锂离子电池的广泛应用不仅源于新兴能源材料的创新,还与制造工艺及装备技术的进步密不可分.极片制造作为生产锂离子电池最核心的过程,包括制浆、涂布、辊压三大关键工序,制造的正负电极构成了电化学反应载体和整个电池的核心.在电极制造中,多孔多组分电极微结构发生复杂的演化与定构过程,很大程度上决定了单体电池的能量密度、倍率特性等性能.本文分析极片制造中制浆、涂布和辊压技术进展与应用情况,重点讨论电极微结构在制造过程中的演化以及其对电池电化学性能的影响,旨在从“制造工艺-微结构-性能”之间的关系视角形成对电极微结构设计、材料制备、制造工艺的进一步认识,为研发高性能锂离子电池提供指导.  相似文献   

16.
锂离子电池能量密度的提高与其正极材料密切相关,富锂层状氧化物及新型聚阴离子化合物作为下一代高能锂离子电池的正极材料已引起研究工作者的广泛关注.结合本课题组的研究工作,综述了这一领域的最新研究工作进展.重点针对材料结构、物理化学(尤其是电化学)特性、电化学反应机理的原位谱学研究以及材料组成-结构-性能之间的相互关系进行了总结、分析及评述.  相似文献   

17.
目前,锂离子电池已成为清洁能源发展的关键支撑技术,未来其需求量和使用量将会激增,但是目前废弃锂离子电池的管理条例和回收市场仍不完善.在这一背景下,锂污染问题迅速成为全世界关注的热点.针对目前尚无研究开展多环境介质中锂元素高精度分析方法的开发与验证工作这一现状,本研究首次建立了多环境介质(河水、污水、大气颗粒物、沙尘暴颗粒、土壤、植物、动物、锂离子电池正极材料)中锂元素的全流程定量分析方法.在前处理过程方面,六类常见消解酸体系(硝酸、王水、反王水、硝酸+双氧水、硝酸+氢氟酸、反王水+氢氟酸)在消解过程和赶酸过程都可保证锂元素的回收率在95%以上,因此可根据环境样本的化学特性从六类常用酸消解体系中选择最适消解液,利用赶酸仪在170℃下进行赶酸操作,可以保证最佳消解效果和赶酸效率.在质谱分析方面,选择Rh103和In115这两种内标元素,在非碰撞池分析模型下可实现多环境介质中锂元素的痕量分析.在分析方法的基础上,本研究进一步揭示了我国不同地区多环境介质中锂元素的赋存特征,具体结果如下:土壤和沉积物(7.60~66.00 mg/kg)、植物(0.03~2.36 mg/(kg dw))、动物(0...  相似文献   

18.
刘金云  刘锦淮 《自然杂志》2017,39(5):340-346
锂离子电池是一种典型的可充电电池,在储能技术领域占主导地位,应用极为广泛。近年来,科技发展对锂离子电池提出了更高要求,包括高能量密度、高安全稳定性等,驱动着电池材料与结构不断创新发展。研制石墨烯基复合正极负极材料,是极为活跃的方向。在此,对锂离子电池的结构、面临的突出挑战以及石墨烯基正极和负极材料研究前沿进行了介绍,重点围绕石墨烯增强电极材料电学特性的基本原理和复合材料制备技术作了阐述,也提出了未来发展动向。  相似文献   

19.
《科学通报》2021,66(9):1046-1056
锂金属由于其具有极高的理论比容量、较低的密度和极低的氧化还原电位等特性,是实现下一代高比能锂电池的理想负极材料.然而,在锂金属电池实际充放电循环过程中,锂金属负极表面易产生枝晶状结构锂,这些锂枝晶不仅能够引起锂金属电池的安全隐患,而且极大地降低锂金属电池的库伦效率,缩短电池的使用寿命.这些问题严重阻碍了锂金属电池的应用发展.因此,充分认识锂枝晶的形成和生长机理,同时精确调控金属锂的电化学溶解/锂沉积过程,进而有效地抑制锂枝晶的形成生长,是实现下一代锂金属电池商业化应用的首要前提.本文综述了近年来锂枝晶生长理论与抑制方法的研究进展,在此基础上,从热力学与动力学角度加深对锂枝晶生长机理的认识,将为开发锂枝晶的抑制策略和加快锂金属电池的实用化提供科学理论借鉴.  相似文献   

20.
柔性电子器件日益流行,给人们的日常生活带来了巨大的变革,同时也激发了柔性储能器件的设计和研制,其中,柔性锂离子电池引起了广泛的关注.为了获得柔性储能器件,首先需要制备柔性电极,即要求在反复变形状态下,电极能够保持优异的力学和电学性能.碳材料具有优异的力学性能和导电性,不仅能够直接制备柔性电极,还能够与活性材料复合,作为基底提供自支撑的导电网络.但是"刚性"的活性材料与"柔性"基底从力学和形态本质上均不匹配,二者的复合、组装、制备方法及其结合强度直接影响电池的电化学性能.本文综述了近年来碳纳米管、碳纳米线、石墨烯、石墨炔及碳布等碳基柔性电极的发展情况,着重分析了自支撑柔性电极的制备方法、结构特征与电化学性能的关系,同时简要总结了目前几种典型结构的柔性锂离子电池,探讨了碳材料柔性电极面临的挑战,并对其未来发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号