首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
绿色轮胎与传统轮胎相比,具有滚动阻力小、生热低、耐磨等优异的特性,突显出了低碳环保、绿色节能的优势.因此,绿色轮胎的研究和开发具有十分重要的意义.为了使橡胶复合材料性能满足绿色轮胎的要求,纳米填料的填充对其性能具有关键性作用,因此,利用新型纳米填料提高橡胶的动态性能,如抗湿滑性、滚动阻力、耐磨性以及生热等成为了学术界及工业界研究的热点之一.然而,影响橡胶复合材料动态性能的因素较复杂,本文主要从填料的分散以及填料与基体间的界面相互作用展开,探讨不同改性方式对传统纳米填料(如炭黑、白炭黑等)和新型纳米填料(如石墨烯、黏土等)在橡胶基体中分散状态的影响,以及填料分散和填料-基体界面相互作用对橡胶复合材料动态性能的影响.  相似文献   

2.
王庆国  张晓红  乔金梁 《科学通报》2008,53(12):1482-1484
制备、研究了超细全硫化粉末丁腈橡胶(UFPNBR)颗粒和剥离型钠基蒙脱土(Na-MMT)片层相互隔离、依附的UFPNBR/Na-MMT纳米复合粉末. 在新颖的UFPNBR/Na-MMT纳米复合粉末与丁腈橡胶(NBR)生胶混炼过程中, 借助纳米级UFPNBR颗粒与NBR生胶的良好相容性以及UFPNBR颗粒的助分散作用, 将与UFPNBR颗粒彼此隔离、依附的纳米级原生态Na-MMT良好分散在NBR基体中, 制备成硫化时间短、阻燃性能好的NBR/UFPNBR/Na-MMT三元纳米复合材料, 为实现高性能橡胶-黏土纳米复合材料的工业制备提供一种新的研究思路.  相似文献   

3.
绿色轮胎在节能、环保、安全方面的优势使其成为当今世界轮胎的发展趋势.稀土(钕系)顺丁橡胶(Nd-BR)和溶聚丁苯橡胶(SSBR)是制造绿色轮胎胎面重要的合成橡胶原材料.本文主要介绍绿色轮胎发展现状、Nd-BR合成技术进展、工业化产品及新型丁二烯基共聚橡胶合成技术进展,着重介绍微观结构、拓扑结构及共聚组成对其加工性能、物理机械性能及动态力学性能的重要贡献,为制造绿色轮胎用高性能合成橡胶原材料提供参考.顺式结构含量在98%以上的Nd-BR具有更加优异的物理机械性能及动态力学性能,可有效降低轮胎生热、滚动功率损耗、压缩永久变形及终动压缩率,降低轮胎磨耗并延长轮胎寿命,更适用于制造绿色轮胎.长链支化结构Nd-BR可以改善生胶的抗冷流性能、加工性能及与填料的混合性能,进一步提高硫化胶的物理机械性能和动态力学性能.高顺式含量丁苯无规共聚弹性体及立构规整丁二烯/苯乙烯共聚物集高顺式聚丁二烯橡胶、丁苯橡胶的优异性能于一体,综合性能提高,冰雪路面抓着力提高,滚动阻力下降,符合高性能绿色轮胎对合成橡胶原材料的要求.  相似文献   

4.
封面说明     
正根据能源、环境、经济、消费者的需求,具有节油节能、环保、安全、长寿命的绿色轮胎迅速发展.作为绿色轮胎胎面材料,需要具有低滚动阻力、高耐磨和高抗湿滑性能,对橡胶原材料的结构与性能、增强填料的结构与性能、橡胶与填料的复合加工技术等提出更高的要求和新的挑战.面对国家需求与研究挑战,诸多研究者提出了解决方法,从分子水平上设计合成  相似文献   

5.
白炭黑作为优异的补强填料,在橡胶材料领域有广泛的应用,但是白炭黑在聚合物基体中的分散性和相容性,一定程度上限制了其应用.近年来,随着绿色轮胎的发展,白炭黑结构设计和表面改性获得了广泛关注.本文总结了改性剂种类、改性工艺、结合方式等对白炭黑分散性和补强性的影响,并分析了用不同方式处理的白炭黑对硅橡胶和轮胎橡胶性能的影响.采用液相表面修饰方法是获得高性能、低成本白炭黑的有效途径之一,并可通过纳米二氧化硅参与橡胶聚合的原位合成技术获得具有多种结构的高性能橡胶材料.  相似文献   

6.
赵梦强  张强  贾希来  黄佳琦  张英皓  魏飞 《科学通报》2010,55(12):1194-1194
将一维的碳纳米管与二维的片层材料组合形成多级有序的三维纳米结构材料, 可获得许多奇特的新性能. 目前将碳纳米管分散在基体中形成了多种复合材料, 发现其力学、电学、磁学、热学以及输运性能都呈现了显著的增强, 但是在基体中均匀地分散碳纳米管往往是材料组装过程中的核心问题. 发展有效可控的一维/二维材料有序组装方法是获得高性能材料的关键. 碳纳米管生长结束后, 在表面活性剂、生物大分子辅助下超声、剪切、搅拌等是其分散常用的方法. 如果能利用碳纳米管生长过程中借助特殊结构的催化剂及工艺对碳纳米管的排列及分散进行原位控制, 这样就有望一步获得碳纳米管高度分散、多级有序、高性能的三维纳米复合材料. .....  相似文献   

7.
日益流行的柔性电子器件要求在反复变形状态下,材料仍能保持优异的力学和电学性能.而石墨烯作为一种二维(two dimensional,2D)碳纳米片,具有独特的力学和电学性能,成为构筑此类柔性电子器件的首选基元材料.然而,如何将石墨烯纳米片组装成高性能的石墨烯纳米复合材料,仍然存在巨大挑战.天然鲍鱼壳因其内部有序规整的层状结构和丰富的界面相互作用,而具有综合优异的力学性能.这种独特的界面结构设计,为2D纳米片仿生组装提供了新的思想源泉.本文按照"有所发现,有所发明,有所创造"的学术研究思路,总结了最近几年国内外课题组关于仿生石墨烯纳米复合材料(bioinspired graphene-based nanocomposites,BGBNs)的研究进展;分析了石墨烯层间不同的界面相互作用;详细讨论了基于协同效应,仿生构筑强韧一体化石墨烯纳米复合材料的策略;重点阐述了BGBNs的拉伸强度、韧性以及电导率等基本物理性能.最后,本文也简单概括了BGBNs在柔性电子器件领域的应用和潜在的挑战,并展望了BGBNs未来的发展方向.  相似文献   

8.
姚斌 《科学通报》1995,40(14):1332-1332
工作已取得较大的进展.将这种薄带纳米合金与具有较好韧性的金属粘接,制成金属/纳米合金多层复合材料,既具有较好的力学性能,又不破坏纳米合金的结构和性能,因而有利于纳米合金材料的实际应用.研究静高压在多层复合材料的制备过程中对纳米晶体的形成、性能、金属/纳米合金界面相的形成及扩散反应速率的影响,在理论研究上和实际应用上都具有重要的意义.  相似文献   

9.
碳纳米管和石墨烯作为近年来兴起的新型纳米炭材料,以其独特的一维/二维结构形态和卓越的物理性能已引起人们广泛关注.将纳米炭材料与环氧树脂进行复合制得纳米炭/环氧树脂复合材料,可以赋予材料更为优异的力学、电学、热学等综合性能.纳米炭材料的加入可以在复合材料内部引入更多的界面,造成显著的能量耗散,从而使得纳米复合材料在具有轻质高强特性的同时,兼具优异的黏弹阻尼性能,对于延长材料使用寿命、提高材料减震降噪性能等方面具有极为重要的意义.本文主要论述了纳米炭/环氧树脂复合材料的黏弹阻尼性能以及近期的相关研究进展,重点阐述碳纳米管、石墨烯及其复合材料的阻尼作用机理,介绍了纳米复合材料黏弹阻尼性能的测试方法,指出纳米炭/环氧树脂阻尼复合材料领域存在的主要问题,并对其应用前景进行了展望.  相似文献   

10.
采用成核/晶化隔离法(SNAS)制备了晶体结构完整、晶相单一的纳米量级NiAl-NO3-LDHs. 使NiAl-NO3-LDHs与LDPE在双辊炼塑机上进行充分混合制备了NiAl-NO3-LDHs/LDPE复合材料, 在紫外光照射下复合材料颜色发生了明显变化, 由照射前的橄榄绿色变成青灰色, 80℃加热后又恢复到橄榄绿色. 考察了NiAl-NO3-LDHs的添加量和光照时间等因素对复合材料光致变色性能的影响, 结果表明, 随NiAl-NO3-LDHs加入量的增加复合材料光致变色现象趋于明显, 当加入量达到5%时, 复合材料表现出良好的光致变色性能; 紫外光照射20 min后颜色变化达到最大值; 将NiAl-NO3-LDHs和LDPE进行复合, 可以显著提高NiAl-NO3-LDHs的光致变色稳定性, 复合材料光致变色性能表现出良好的重复性. 加入纳米量级的NiAl-NO3-LDHs, 对复合材料的力学性能也起到了一定程度的改善作用.  相似文献   

11.
碳纤维及复合材料是关乎国家安全必须自主保障的关键战略材料,而树脂基(含量在35%以上)是碳纤维树脂基复合材料的两大材料基元之一,直接决定着复合材料的服役性能与成型工艺性.北京化工大学先进复合材料研究中心(AdvancedCompositesCenter,ACC)团队针对碳纤维用高性能树脂基体国产化存在品种缺乏及不成系列等突出问题,面向国家重大战略需求,在解决国家碳纤维树脂基复合材料的"无"和"有"的"顶天立地"方向上开展了一系列基础理论和应用基础研究,推动了国产碳纤维从"能用"向"好用"的质的飞跃,支撑了国内碳纤维树脂基复合材料研究由跟踪仿制的"跟跑"到自主创新的"并跑"的根本转变,取得了一系列重要创新成果.本文简述了ACC团队近10年在碳纤维专用树脂分子结构模拟设计及交联网络调控、碳纤维树脂基复合材料界面相容新机制的探究、碳纤维树脂基复合材料多级增韧增强方法学的构建、碳纤维高性能树脂基体的制备技术发展及碳纤维树脂基复合材料成型工艺的创新及其产品工程等方面的基础研究成果及关键技术突破,并对碳纤维树脂基复合材料高性能化的发展方向进行了展望.  相似文献   

12.
氧化石墨/聚吡咯复合材料的制备及其电化学性质   总被引:1,自引:0,他引:1  
韩永芹  丁兵  张校刚 《科学通报》2011,56(23):1927-1933
利用原位聚合制备了氧化石墨(graphite oxide, GO)/聚吡咯(polypyrrole, PPy)纳米复合材料(GPYs), 探讨了吡咯与GO的投料比对GPYs的结构以及电化学性能的影响. 利用傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X-射线衍射(XRD)技术对复合材料的结构进行表征; 利用循环伏安、恒电流充放电以及电化学阻抗技术测试复合材料的电化学性能. 实验结果表明, 当吡咯加入量较多时(GPYs20 (吡咯/GO = 80:20)与GPYs50 (吡咯/GO = 50:50))会导致复合材料中PPy 和GO 层的团聚, 这会降低PPy 在GPYs20与GPYs50 中的比电容贡献值. 当吡咯与GO的投料比低至20:80 时, 复合材料中具有纳米纤维状形貌的PPy 均匀分散于脱落的GO 层表面/层内, 所得到GPYs80 的导电性得以提高. PPy在GPYs80 的比电容贡献值(383 F/g)比纯PPy (201 F/g)高, 表明GO和PPy 之间存在协同效应.  相似文献   

13.
碳纳米材料具有大的比表面积、发达的孔结构和丰富的表面化学性质,可与各种无机纳米材料耦合/复合构筑新结构、高性能、表面物理化学性质可调的碳纳米复合材料并用于乳液催化领域.本文介绍了固体颗粒乳化机理,影响乳化体系的因素及基于固体颗粒构建的乳液催化体系的基本原理;综述了氧化物、氢氧化物、碳素材料及其碳纳米复合材料固体颗粒乳化剂的特点,及基于这些固体颗粒构筑的乳液催化新技术的研究进展;指出了目前乳液催化技术研究存在的问题,认为基于碳纳米复合材料作为固体颗粒乳化剂的乳液催化新技术,是未来催化技术的重要发展方向之一.  相似文献   

14.
王威望  李盛涛 《科学通报》2020,65(31):3461-3474
绝缘击穿是高性能工程电介质材料发展的关键基础科学问题.顺应第三代电网的发展要求,超/特高压交直流电力设备、智能电网、电力物联网和极端条件下电力设备的需求对工程电介质的击穿性能提出了更高的要求.本文综述了工程电介质材料击穿的研究现状,围绕电介质击穿和理论机理、性能演变规律、性能改善提升、新型高性能纳米复合电介质和聚合物微观分子设计/调控等内容展开论述.首先,基于电介质击穿和劣化的时空层次关系,论述了强场空间电荷击穿以及能量累计效应,拓展了电、热、电-机械击穿理论.其次,阐述了电介质击穿特性以及统计分析规律,分析了聚合物电介质本征击穿场强与温度、电压形式、空间电荷积聚和试样厚度的关系.再次,论述了高性能电介质材料的击穿特性以及性能调控方法;阐释了纳米复合电介质的研究现状和界面区作用机理,分析了聚合物微观分子设计的调控方法,以及对击穿的改性作用.最后,结合未来电力设备的发展需求,总结了高击穿性能电介质的关键问题和发展趋势,为新能源电力系统中工程电介质的发展提供依据和思路.  相似文献   

15.
秦亚伟  黄英娟  董金勇 《科学通报》2008,53(22):2710-2715
作为一种经济、有效的聚烯烃高性能化的途径, 聚烯烃的纳米复合改性应用前景广阔. 由于聚烯烃具有不同于大多数其他聚合物的以化学惰性为特征的结构特异性, 通过原位聚合手段实现纳米复合对聚烯烃具有特殊的意义. 本文综合介绍了以原位聚合技术实现聚烯烃纳米复合的研究进展, 着重分析了聚烯烃/蒙脱土纳米复合材料的研究现状, 明确提出了今后的研究发展方向.  相似文献   

16.
王志新 《科学之友》2011,(11):11-12
文章介绍了聚合物&软磁纳米晶/非晶复合材料的研究背景、市场前景,并通过一些主要的研究成果重点阐述了目前国内外聚合物&软磁纳米晶/非晶复合材料的制备和性能研究的现状.  相似文献   

17.
γ射线辐照-溶胶凝胶法制备非晶SiO_2-Ag纳米复合材料   总被引:2,自引:0,他引:2  
朱英杰 《科学通报》1994,39(15):1440-1440
纳米复合材料的特殊性能和用途越来越受到人们的重视.Datta及Roy等曾报道用溶胶-凝胶法制备纳米复合材料,但制备需要经过高温热处理或高温氢气还原.最近,我们将γ射线辐照与溶胶-凝胶法结合起来,在常温常压下成功地制备出非晶SiO_2-Ag纳米复合材料.其制备方法:用分  相似文献   

18.
全息高分子纳米复合材料(holographic polymer nanocomposites, HPNC)是基于相干激光聚合诱导相分离原理制备的具有周期性有序结构的高分子纳米复合材料,属于多维度、跨尺度的新概念信息材料.不仅通过微米/亚微米尺度的周期性有序相分离结构存储光波的振幅、相位等全部信息,还通过引入的纳米粒子、液晶、发光分子等存储其他信息,具有信息存储容量大、光调制能力强的特点.在高端防伪、裸眼三维显示、增强现实、高密度数据存储、全息传感等高新技术领域具有重要应用价值.本文重点概述HPNC的高性能化与多功能化研究进展,并展望了HPNC的发展方向.  相似文献   

19.
报道了直接将苯乙烯、马来酸酐共聚物单体, 层插进入二甲基亚砜(DMSO)改性的高岭土层间, 原位聚合, 并使之剥离的方法. 采用X射线衍射(XRD), 透射电子显微镜(TEM)的方法考察了苯乙烯、马来酸酐的原位聚合层插、剥离方法所制得的高聚物/高岭土纳米复合材料的微观结构. XRD分析结果表明, 表征层间距的d001值随聚苯乙烯-马来酸酐(PSMA)进入了高岭土的层间而增大, 直至完全剥离, 高岭土的特征峰消失. 从透射电子显微镜图像可以看出, 高岭土被剥离并以纳米级片层分散在高聚物的基体中. 改性高岭土表面与PSMA分子链间的相互作用则由红外(FTIR)分析结果得到引证. 热失重分析(TGA)结果则显示纳米复合材料的热稳定性能得到显著的提高.  相似文献   

20.
以羧甲基纤维素钠(CMC)和多壁碳纳米管(MWCNTs)作为原料, 采用离子液体溶解羧甲基纤维素钠制备CMC/MWCNTs复合材料. 通过使用场发射扫描电子显微镜(FE-SEM)、高分辨 透射电子显微镜(HR-TEM)、X射线衍射仪(XRD)和电化学工作站对复合材料进行了结构表征和电化学性能分析. 结果表明, 以离子液体作为溶剂能够有效溶解CMC并使其较为均匀地包覆在MWCNTs的表面, CMC包覆层的厚度约5.4 nm; 用离子液体制备的CMC/MWCNTs复合材料对H2O2具有良好的电催化效果, 在循环伏安曲线图中出现了明显的氧化峰; MWCNTs的含量和超声时间是影响复合材料分散性和电化学性能的关键参数, MWCNTs的含量3 mg, 超声2 h时, 制得的CMC/MWCNTs复合材料具有最优的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号