首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional neurogenesis in the adult hippocampus   总被引:117,自引:0,他引:117  
van Praag H  Schinder AF  Christie BR  Toni N  Palmer TD  Gage FH 《Nature》2002,415(6875):1030-1034
There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.  相似文献   

2.
Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.  相似文献   

3.
Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life. In the mammalian hippocampus, a region important for spatial and episodic memory, thousands of new granule cells are produced per day, with the exact number depending on environmental conditions and physical exercise. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca2+ channels can generate isolated Ca2+ spikes and boost fast Na+ action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.  相似文献   

4.
A role for adult TLX-positive neural stem cells in learning and behaviour   总被引:1,自引:0,他引:1  
Zhang CL  Zou Y  He W  Gage FH  Evans RM 《Nature》2008,451(7181):1004-1007
Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.  相似文献   

5.
Neurons derived from radial glial cells establish radial units in neocortex   总被引:70,自引:0,他引:70  
The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.  相似文献   

6.
Adult neural stem cells-Functional potential and therapeutic applications   总被引:4,自引:0,他引:4  
The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.  相似文献   

7.
小脑间位核(interpositus nucleus,IN)主要接受γ-氨基丁酸(GABA)能纤维支配,同时接受组胺能纤维的调节.本研究在小脑脑片上研究了GABA和组胺对单个IN神经元电活动的共同作用.持续灌流组胺或同时施加组胺和GABA,81.2%(69/85)神经元,GABA及其激动剂的效应都被组胺削弱(持续灌流n=33;同时施加n=36).这种削弱效应能够被组胺H2受体阻断剂ranitidine(n=10)和PKA抑制剂H-89阻断(n=8),fors-kolin模拟组胺的效应(n=9).结果表明组胺和GABA对IN神经元的电活动具有交互调节作用:通过激活H2受体偶联的G-protein-AC-PKA信号通路,磷酸化GABAB和GABAA受体,降低受体功能.推测受体间的对话的工作模式,可能是整个大脑神经元活动的某些药理作用和生理活动调节的基础;如果对话紊乱,可能导致大脑功能障碍.  相似文献   

8.
Neurogenesis in the adult is involved in the formation of trace memories   总被引:94,自引:0,他引:94  
Shors TJ  Miesegaes G  Beylin A  Zhao M  Rydel T  Gould E 《Nature》2001,410(6826):372-376
The vertebrate brain continues to produce new neurons throughout life. In the rat hippocampus, several thousand are produced each day, many of which die within weeks. Associative learning can enhance their survival; however, until now it was unknown whether new neurons are involved in memory formation. Here we show that a substantial reduction in the number of newly generated neurons in the adult rat impairs hippocampal-dependent trace conditioning, a task in which an animal must associate stimuli that are separated in time. A similar reduction did not affect learning when the same stimuli are not separated in time, a task that is hippocampal-independent. The reduction in neurogenesis did not induce death of mature hippocampal neurons or permanently alter neurophysiological properties of the CA1 region, such as long-term potentiation. Moreover, recovery of cell production was associated with the ability to acquire trace memories. These results indicate that newly generated neurons in the adult are not only affected by the formation of a hippocampal-dependent memory, but also participate in it.  相似文献   

9.
10.
Tashiro A  Sandler VM  Toni N  Zhao C  Gage FH 《Nature》2006,442(7105):929-933
New neurons are continuously integrated into existing neural circuits in adult dentate gyrus of the mammalian brain. Accumulating evidence indicates that these new neurons are involved in learning and memory. A substantial fraction of newly born neurons die before they mature and the survival of new neurons is regulated in an experience-dependent manner, raising the possibility that the selective survival or death of new neurons has a direct role in a process of learning and memory--such as information storage--through the information-specific construction of new circuits. However, a critical assumption of this hypothesis is that the survival or death decision of new neurons is information-specific. Because neurons receive their information primarily through their input synaptic activity, we investigated whether the survival of new neurons is regulated by input activity in a cell-specific manner. Here we developed a retrovirus-mediated, single-cell gene knockout technique in mice and showed that the survival of new neurons is competitively regulated by their own NMDA-type glutamate receptor during a short, critical period soon after neuronal birth. This finding indicates that the survival of new neurons and the resulting formation of new circuits are regulated in an input-dependent, cell-specific manner. Therefore, the circuits formed by new neurons may represent information associated with input activity within a short time window in the critical period. This information-specific addition of new circuits through selective survival or death of new neurons may be a unique attribute of new neurons that enables them to play a critical role in learning and memory.  相似文献   

11.
小脑间位核(interpositusnucleus,IN)主要接受1一氨基丁酸(GABA)能纤维支配,同时接受组胺能纤维的调节.本研究在小脑脑片上研究了GABA和组胺对单个IN神经元电活动的共同作用.持续灌流组胺或同时施加组胺和GABA,81.2%(69/85)神经元,GABA及其激动剂的效应都被组胺削弱(持续灌流n=33;同时施加n=36).这种削弱效应能够被纽胺H,受体阻断剂ranitidine(n=10)和PK。抑制剂H一89阻断(n=8),fors—kolin模拟组胺的效应(n=9).结果表明组胺和GABA对IN神经元的电活动具有交互调节作用:通过激活H:受体偶联的G—protein—AC—PK。信号通路,磷酸化GABAB和GABA^受体,降低受体功能.推测受体间的对话的工作模式,可能是整个大脑神经元活动的某些药理作用和生理活动调节的基础;如果对话紊乱,可能导致大脑功能障碍.  相似文献   

12.
Many neurons receive a continuous, or 'tonic', synaptic input, which increases their membrane conductance, and so modifies the spatial and temporal integration of excitatory signals. In cerebellar granule cells, although the frequency of inhibitory synaptic currents is relatively low, the spillover of synaptically released GABA (gamma-aminobutyric acid) gives rise to a persistent conductance mediated by the GABA A receptor that also modifies the excitability of granule cells. Here we show that this tonic conductance is absent in granule cells that lack the alpha6 and delta-subunits of the GABAA receptor. The response of these granule cells to excitatory synaptic input remains unaltered, owing to an increase in a 'leak' conductance, which is present at rest, with properties characteristic of the two-pore-domain K+ channel TASK-1 (refs 9,10,11,12). Our results highlight the importance of tonic inhibition mediated by GABAA receptors, loss of which triggers a form of homeostatic plasticity leading to a change in the magnitude of a voltage-independent K + conductance that maintains normal neuronal behaviour.  相似文献   

13.
Astroglia induce neurogenesis from adult neural stem cells   总被引:116,自引:0,他引:116  
Song H  Stevens CF  Gage FH 《Nature》2002,417(6884):39-44
During an investigation of the mechanisms through which the local environment controls the fate specification of adult neural stem cells, we discovered that adult astrocytes from hippocampus are capable of regulating neurogenesis by instructing the stem cells to adopt a neuronal fate. This role in fate specification was unexpected because, during development, neurons are generated before most of the astrocytes. Our findings, together with recent reports that astrocytes regulate synapse formation and synaptic transmission, reinforce the emerging view that astrocytes have an active regulatory role--rather than merely supportive roles traditionally assigned to them--in the mature central nervous system.  相似文献   

14.
Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten per cent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing.  相似文献   

15.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

16.
E Cattaneo  R McKay 《Nature》1990,347(6295):762-765
Nerve growth factor plays an important part in neuron-target interactions in the late embryonic and adult brain. We now report that this growth factor controls the proliferation of neuronal precursors in a defined culture system of cells derived from the early embryonic brain. Neuronal precursor cells were identified by expression of the intermediate filament protein nestin. These cells proliferate in response to nerve growth factor but only after they have been exposed to basic fibroblast growth factor. On withdrawal of nerve growth factor, the proliferative cells differentiate into neurons. Thus, in combination with other growth factors, nerve growth factor regulates the proliferation and terminal differentiation of neuroepithelial stem cells.  相似文献   

17.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

18.
The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.  相似文献   

19.
Induction of neurogenesis in the neocortex of adult mice   总被引:118,自引:0,他引:118  
Magavi SS  Leavitt BR  Macklis JD 《Nature》2000,405(6789):951-955
Neurogenesis normally only occurs in limited areas of the adult mammalian brain--the hippocampus, olfactory bulb and epithelium, and at low levels in some regions of macaque cortex. Here we show that endogenous neural precursors can be induced in situ to differentiate into mature neurons, in regions of adult mammalian neocortex that do not normally undergo any neurogenesis. This differentiation occurs in a layer- and region-specific manner, and the neurons can re-form appropriate corticothalamic connections. We induced synchronous apoptotic degeneration of corticothalamic neurons in layer VI of anterior cortex of adult mice and examined the fates of dividing cells within cortex, using markers for DNA replication (5-bromodeoxyuridine; BrdU) and progressive neuronal differentiation. Newly made, BrdU-positive cells expressed NeuN, a mature neuronal marker, in regions of cortex undergoing targeted neuronal death and survived for at least 28 weeks. Subsets of BrdU+ precursors expressed Doublecortin, a protein found exclusively in migrating neurons, and Hu, an early neuronal marker. Retrograde labelling from thalamus demonstrated that BrdU+ neurons can form long-distance corticothalamic connections. Our results indicate that neuronal replacement therapies for neurodegenerative disease and CNS injury may be possible through manipulation of endogenous neural precursors in situ.  相似文献   

20.
Stoleru D  Peng Y  Nawathean P  Rosbash M 《Nature》2005,438(7065):238-242
The biochemical machinery that underlies circadian rhythms is conserved among animal species and drives self-sustained molecular oscillations and functions, even within individual asynchronous tissue-culture cells. Yet the rhythm-generating neural centres of higher eukaryotes are usually composed of interconnected cellular networks, which contribute to robustness and synchrony as well as other complex features of rhythmic behaviour. In mammals, little is known about how individual brain oscillators are organized to orchestrate a complex behavioural pattern. Drosophila is arguably more advanced from this point of view: we and others have recently shown that a group of adult brain clock neurons expresses the neuropeptide PDF and controls morning activity (small LN(v) cells; M-cells), whereas another group of clock neurons controls evening activity (CRY+, PDF- cells; E-cells). We have generated transgenic mosaic animals with different circadian periods in morning and evening cells. Here we show, by behavioural and molecular assays, that the six canonical groups of clock neurons are organized into two separate neuronal circuits. One has no apparent effect on locomotor rhythmicity in darkness, but within the second circuit the molecular and behavioural timing of the evening cells is determined by morning-cell properties. This is due to a daily resetting signal from the morning to the evening cells, which run at their genetically programmed pace between consecutive signals. This neural circuit and oscillator-coupling mechanism ensures a proper relationship between the timing of morning and evening locomotor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号