首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.  相似文献   

2.
Experimental demonstration of a BDCZ quantum repeater node   总被引:1,自引:0,他引:1  
Yuan ZS  Chen YA  Zhao B  Chen S  Schmiedmayer J  Pan JW 《Nature》2008,454(7208):1098-1101
Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.  相似文献   

3.
Entanglement is the fundamental characteristic of quantum physics-much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as 'flying' and stationary qubits in quantum information technologies (such as quantum repeaters and quantum networks). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338?nm) and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser-Horne-Shimony-Holt inequality by almost three standard deviations (S = 2.64?±?0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters for long-distance quantum networks.  相似文献   

4.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.  相似文献   

5.
Bajcsy M  Zibrov AS  Lukin MD 《Nature》2003,426(6967):638-641
Physical processes that could facilitate coherent control of light propagation are under active exploration. In addition to their fundamental interest, these efforts are stimulated by practical possibilities, such as the development of a quantum memory for photonic states. Controlled localization and storage of photonic pulses may also allow novel approaches to manipulating of light via enhanced nonlinear optical processes. Recently, electromagnetically induced transparency was used to reduce the group velocity of propagating light pulses and to reversibly map propagating light pulses into stationary spin excitations in atomic media. Here we describe and experimentally demonstrate a technique in which light propagating in a medium of Rb atoms is converted into an excitation with localized, stationary electromagnetic energy, which can be held and released after a controllable interval. Our method creates pulses of light with stationary envelopes bound to an atomic spin coherence, offering new possibilities for photon state manipulation and nonlinear optical processes at low light levels.  相似文献   

6.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.  相似文献   

7.
The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100?megahertz to 5?gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.  相似文献   

8.
A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.  相似文献   

9.
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.  相似文献   

10.
Blinov BB  Moehring DL  Duan L  Monroe C 《Nature》2004,428(6979):153-157
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.  相似文献   

11.
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.  相似文献   

12.
Julsgaard B  Sherson J  Cirac JI  Fiurásek J  Polzik ES 《Nature》2004,432(7016):482-486
The information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot be perfectly recorded in a classical memory, even in principle. In the field of quantum information, this has led to the long-standing challenge of how to achieve a high-fidelity transfer of an independently prepared quantum state of light onto an atomic quantum state. Here we propose and experimentally demonstrate a protocol for such a quantum memory based on atomic ensembles. Recording of an externally provided quantum state of light onto the atomic quantum memory is achieved with 70 per cent fidelity, significantly higher than the limit for classical recording. Quantum storage of light is achieved in three steps: first, interaction of the input pulse and an entangling field with spin-polarized caesium atoms; second, subsequent measurement of the transmitted light; and third, feedback onto the atoms using a radio-frequency magnetic pulse conditioned on the measurement result. The density of recorded states is 33 per cent higher than the best classical recording of light onto atoms, with a quantum memory lifetime of up to 4 milliseconds.  相似文献   

13.
McKeever J  Boca A  Boozer AD  Buck JR  Kimble HJ 《Nature》2003,425(6955):268-271
Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.  相似文献   

14.
Quantum nature of a strongly coupled single quantum dot-cavity system   总被引:1,自引:0,他引:1  
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.  相似文献   

15.
Mapping photonic entanglement into and out of a quantum memory   总被引:2,自引:0,他引:2  
Choi KS  Deng H  Laurat J  Kimble HJ 《Nature》2008,452(7183):67-71
Developments in quantum information science rely critically on entanglement-a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically. In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon-counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols. But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single-photon sources, our protocol will allow 'on-demand' entanglement of atomic ensembles, a powerful resource for quantum information science.  相似文献   

16.
Brennecke F  Donner T  Ritter S  Bourdel T  Köhl M  Esslinger T 《Nature》2007,450(7167):268-271
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.  相似文献   

17.
研制了以MSP430F4152单片机为核心的水表采集和远传系统。实现水表用水量的实时采集,存储和远传;用单片机内部FALSH存储器存储数据,实现数据存储和断电情况下数据不丢失;法拉电容作为储备电源,保证在外接电源断电后一定时间内系统的水量采集功能正常工作;使用TA6932芯片驱动8位数码管进行多路路水表水量信息的轮流显示;采用RS-485总线和网络转换器(NETCOM-10)把水量数据转换成TCP/IP协议后上传至局域网.  相似文献   

18.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

19.
Akimov AV  Mukherjee A  Yu CL  Chang DE  Zibrov AS  Hemmer PR  Park H  Lukin MD 《Nature》2007,450(7168):402-406
Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.  相似文献   

20.
All properties of molecules--from binding and excitation energies to their geometry--are determined by the highly correlated initial-state wavefunction of the electrons and nuclei. Details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon, by collision with a charged particle or by exposure to a strong laser pulse: if the interaction causing the excitation is sufficiently understood, the fragmentation process can then be used as a tool to investigate the bound initial state. The interaction and resulting fragment motions therefore pose formidable challenges to quantum theory. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single-photon-induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号