首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesozoic (125 Ma) Fangcheng basalts fromShandong Province contain clearly zoned olivines that arerare in terrestrial samples and provide first evidence for thereplacement of lithospheric mantle from high-Mg peridotitesto Iow-Mg peridotites through peridotite-melt reaction.Zoned olivines have compositions in the core (Mg# = 87.2--90.7) similar to those olivines from the mantle peridotiticxenoliths entrained in Cenozoic basalts from the NorthChina craton and in the rim (Mg# = 76.8--83.9) close to oli-vine phenocrysts of the host basalts (75.7--79.0). Thesecompositional features as well as rounded crystal shapes andsmaller grain sizes (300—800 μm) demonstrate that thesezoned olivines are mantle xenocrysts, i.e. disaggregates ofmantle peridotites. Their core compositions can representthose of olivines of mantle peridotites. The zoned texture ofolivines was formed through rapid reaction between the oli-vine xenocryst and the host basalt. This olivine-basaltic meltreaction could have been ubiquitous in the Mesozoic litho-spheric mantle beneath the North China craton, i.e. an im-portant type of the replacement of lithospheric mantle. Thereaction resulted in the transformation of the Paleozoic re-fractory (high-Mg) peridotites to the late Mesozoic fertile(Iow-Mg) and radiogenic isotope-enriched peridotites, lead-ing to the loss of old lithospheric mantle.  相似文献   

2.
Yang  DeBin  Xu  WenLiang  Gao  Shan  Xu  YiGang  Pei  FuPing 《科学通报(英文版)》2012,57(6):651-659
Four dunite xenoliths from the Tietonggou intrusion of western Shandong,China,were subjected to SHRIMP zircon U-Pb dating to constrain timing of the North China Craton(NCC) destruction,a topic of much controversy.Cathodoluminescence images revealed that 15 of the 18 zircon grains from the xenoliths display striped absorption.The rest showed oscillatory growth zoniation.All the zircons had variable contents of Th(49-3569 ppm;average,885 ppm) and U(184-5398 ppm;average,1277 ppm),and variable Th/U ratios(0.15-2.04).These zircon characteristics indicate a magmatic origin.The zircon age data can be divided into five groups:131-145,151-164,261-280,434-452,and 500-516 Ma.Group I(131-145 Ma) is consistent with timing of formation of the Tietonggou high-Mg diorites.Group II(151-164 Ma) is similar in age to Middle-Late Jurassic magmatism in the eastern NCC,which included both mantle-derived and intensive crust-derived magmatism.Group III(261-280 Ma) is similar in age to the Emeishan large igneous province,and Group IV(434-452 Ma) is similar in age to Paleozoic high-silica magmatism in the eastern NCC.Group V(500-516 Ma) may correspond to the global Pan-African event.Results indicate repeated modification of lithospheric mantle in the eastern NCC,and suggest that the most intensive modification occurred in the late Mesozoic(131-164 Ma).  相似文献   

3.
The uppermost mantle is the key area for exchange of heat flux and material convection between the crust and lithospheric mantle. Spatial variations of lithospheric thinning and dynamic processes in the North China Craton could inevitably induce the velocity heterogeneity in the uppermost mantle. In this study, we used Pn arrivals from permanent seismic stations in North China and surrounding regions to construct a tomographic image of the North China Craton. The tomographic method with Pn travel time difference data were used to study the velocity variations in the uppermost mantle. Pn velocities in the uppermost mantle varied significantly in the Eastern, Central and Western blocks of the North China Craton. This suggests that the lithosphere beneath different blocks of the North China Craton have experienced distinct tectonic evolutions and dynamic processes since the Paleozoic. The current uppermost mantle has been imprinted by these tectonic and dynamic processes. Fast Pn velocities are prominent beneath the Bohai Bay Basin in the Eastern Block of the North China Craton, suggesting residuals of the Archean lithospheric mantle. Beneath the Tanlu Fault Zone and Bohai Sea, slow Pn velocities are present in the uppermost mantle, which can be attributed to significant lithospheric thinning and asthenospheric upwelling. The newly formed lithospheric mantle beneath Yanshan Mountain may be the dominant reason for the existence of slow Pn velocities in this region. Conversely, the ancient lower crust and lithospheric mantle already have been delaminated. In the Central Block, significant slow Pn velocities are present in Taihangshan Mountain, which also extends northward to the Yinchuan-Hetao Rift on the northern margin of the Ordos Block and Yinshan Orogen. This characteristic probably is a result of hot asthenospheric upwelling along the active tectonic boundary on the margin of the Western Block. The protracted thermal erosion and underplating of hot asthenospheric upwelling may induce lithospheric thinning and significant slow velocities in the uppermost mantle. Fast velocities beneath the Western Block suggest that the thick, cold and refractory Archean lithospheric keel of craton still is retained without apparent destruction.  相似文献   

4.
Delamination and destruction of the North China Craton   总被引:15,自引:0,他引:15  
This article presents an overview on recent developments in studies of chemical and physical processes of lithospheric delamination with respect to destruction of the North China Craton. It is emphasized that the pyroxenite source resulting from interaction between eclogite-derived melt and peridotite is a direct consequence of delamination. The pyroxenite source thus formed has unique mineralogical and geochemical features, which characterize Mesozoic basalts of the North China Craton. Melt-peridotite interaction played an important role in refertilization of cratonic lithospheric mantle, leading to density increase, weakening and final destabilization of the North China Craton. The nature of the melt is the key to distinguish mechanisms of destructing this craton.  相似文献   

5.
Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman mi- crospectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO2 fluid inclusions, (2) early carbonate melt inclu-sions, (3) late CO2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO2 fluid inclusions, most consist of...  相似文献   

6.
Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.  相似文献   

7.
Based on the LAM-ICPMS analytic results on the trace elements of clinopyroxenes in peridotitic xenoliths occurring in early-Cretaceous basalts from western Xinjiang, the properties and the deep processes, including partial melting and mantle metasomatism, of the subcontinental lithospheric mantle beneath the Tuoyun Basin are analyzed. In the northern edge of the Tarim Basin (southwest Tianshan), the Mesozoic subcontinental lithosphere which has experienced the effect of partial melting (<10%) and intricate mantle metasomatism is characterized by Phanerozoic ‘ocean-type’ mantle. The superposed influence of SiO2-unsaturated silicate melt and carbonate melt probably results in the metasomatic medium which resembles the hydrous silicated carbonate melt in some aspects. By comparing Tuoyun mantle with Cenozoic main mantle beneath eastern China, the properties are similar, while the former shows finer grain and higher diopside content of the peridotites and more conspicuous modal metasomatism.  相似文献   

8.
The major and trace element and isotopic composition were analyzed for the Paleogene volcanics in North China dated by the K-Ar method. The geochemical data show that most volcanics are in calc-alkaline series and the minor is in alkaline series. They differ obviously from Neogene and Quaternary volcanics in geochemistry. In particular, the Paleogene volcanics from the southern part of North China were derived from enriched lithospheric mantle (EMII), which were likely to be a relict mantle wedge formed during the subduction of the Yangtze plate into the North China plate in late Triassic (Indo-Sinian).  相似文献   

9.
Based on studies of the water content of the early Cretaceous Feixian high-magnesium basalts in the eastern part of the North China Craton (NCC), it has been suggested that the early Cretaceous lithospheric mantle of the eastern NCC was highly hydrous (〉1,000 ppm, HeO wt.) and that this high water content had significantly reduced the vis- cosity of the lithospheric mantle and provided a prerequisite for the destruction of the NCC. The eastern part of the NCC had undergone multistage subduction of oceanic plates from the south, north, and east sides since the early Paleozoic, and these events may have caused the strong hydration of the NCC lithospheric mantle. To determine which subduction had contributed most to this hydration, we measured the water contents of the peridotite xenoliths hosted by the early Cretaceous high-magnesium diorites of Fushan in the south- central part of the Taihang Mountains. Our results demon- strate that the water content of the early Cretaceous litho- spheric mantle beneath the south part of the Taihang Mountains was ~ 40 ppm and significantly lower than that of the contemporary lithospheric mantle beneath the eastern part of the NCC. Thus, the hydration of the early Cretaceous lithospheric mantle of the eastern part of the NCC can be ascribed to the subduction of the Pacific plate from the west side. Thus, the main dynamic factor in the destruction of the NCC was likely the subduction of the Pacific plate.  相似文献   

10.
On the timing and duration of the destruction of the North China Craton   总被引:14,自引:0,他引:14  
The timing and duration of the destruction of the North China Craton, which is pivotal to understanding the destruction mechanism and its geodynamic controlling factors, still remain controversial. On the basis of the principles of magma genesis and evolution, first we outline magmatic expressions that can be related to cratonic destruction, then use magmatic and basin evolution trends to constrain the timescale of the lithospheric thinning in North China. The main conclusions include: (1) the thinning of the lithosphere beneath the North China Craton might have started, at least locally, since late Carboniferous-late Triassic, attained its climax during the late Jurassic-early Cretaceous, and continued till the end of late Cretaceous-early Cenozoic. The destruction of the North China Craton was a relatively slow, rather than a dramatic process. (2) The weakened lithospheric zones along the margins and interiors of the craton played an important role in cratonic destruction, partly accounting for the heterogeneous pattern of cratonic destruction. (3) The tectonic factors that controlled the destruction of the North China Craton may be multiple. The late Carboniferous southward subduction of the Paleo-Asian plate and the late Triassic collision between North China and South China may have re-activated the craton by influencing the thermal and integral structure of the craton. The Pacific subduction underneath the eastern Asian continent played a determinant role in the cratonic destruction, governing the distribution patterns of post-Mesozoic basins and major tectonic configuration, temporal change of magmatism and formation of the North-South gravity lineament.  相似文献   

11.
Occurrence of Cretaceous basalts in Fuxin County, Liaoning Province provides us an opportunity to understand Mesozoic mantle processes beneath the northern margin of the North China Craton (NNCC). Fuxin Jianguo basalts occur as volcanic channel phases with well-developed columnar jointings and contain few spinel lherzolite and pyroxenite xenoliths. They are poor in silica and rich in alkalis, Ti and Al, belonging to alkaline basalts. In trace element compositions, Jianguo basalts are moderately enriched in LREE and LILE, but not depleted in HFSE. They have low Sr and high Nd and Pb isotopic ratios. These geochemical characteristics suggest that Jianguo basalts originated from the depleted asthenosphere, representing an undifferentiated and uncontaminated primitive magma. Presence of these basalts indicates that the lithosphere beneath the region had thickness less than 65 km at the time of basalt eruption and was mainly composed of fertile pargasite-bearing spinel Iherzolite and plagioclase pyroxenite. The voluminous basaltic-andesitic magmatism during the early Jurassic-late Cretaceous time indicates that the commencement and accomplishment of lithosphere thinning in the NNCC was much earlier than that in the southern margin, since the mafic-intermediate volcanism only occurred at the Cretaceous time in the southern margin and the basalts with an asthenosphere isotopic signature at the Tertiary. This shows that highly spatial and temporal heterogeneity existed in the Mesozoic lithosphere evolution.  相似文献   

12.
Recent studies indicate that the Mesozoic litho- spheric thinning in North China was diachronous with that in west to the Taihangshan gravity lineament being later than in the eastern part of the North China Cra- ton[1―3]. During the Cenozoic, lithospher…  相似文献   

13.
Zircon U-Pb dating indicates that the fuchsite quartzite in eastern Hebei Province was derived from weathering and erosion of the 3.6-3.8 Ga granitic rocks. In-situ zircon Hf analyses show that the Lu-Hf isotopic system remained closed during later thermal disturbances. Zircons with concordant ages have Hf isotopic model ages of about 3.8 Ga, suggesting a recycling of this ancient crust. The -3.8 Ga zircons have similar Hf isotopic compositions to those of chondrite, indicating that their source rocks (granitic rocks) were derived from partial melting of the juvenile crust which originated from a mantle without significant crust-mantle differentiation. Therefore, it is proposed that there was no large-scale crustal growth before -3.8 Ga in eastern Hebei Province. Considering zircon Hf isotopic data from other areas, it is concluded that the most ancient crust in the North China Craton probably formed at about 4.0 Ga, and the possibility to find crust older than 4.0 Ga is very limited.  相似文献   

14.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The results provide further constraints on the crustal formation and evolution history of NCC. Four ^207Pb/^206Pb age populations were obtained from 99 analyses, with clusters at -3.40 Ga, 2.77-2.80 Ga, -2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Archean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ge detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77-2.80 Ga zircons make up a relatively small proportion and have the highest εHf(t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The -2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at -2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±2.3 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

15.
In situ Re-Os isotopes of sulfides in peridotitic xenoliths from Cenozoic Hannuoba basalts were analyzed by LAM-MC-ICPMS. The suifides developed two types of occurrences including silicate-enclosed and interstitial. In the enclosed sulfides, 187Os/188Os vary from 0.1124 to 0.1362 and 187Re/188Os from 0.0026 to 1.8027. In the interstitial ones, 187Os/188Os have a range from 0.1174 to 0.1354 and 187Re/188Os from 0.0365 to 1.4469. The oldest age, calculated by TRD for the enclosed sulfides, is 2.1 Ga. An isochron age of 2.3±1.2 Ga is obtained by five grains of enclosed sulfides and primitive mantle. The sulfides used have lower Re-Os isotopic ratio than primitive mantle. Meanwhile, an isochron age of 645±225 Ma is given by all in- terstitial sulfides and the enclosed sulfides with higher Re-Os isotopic ratio due to Re addition after man- tle formation. In addition, the model age of 1.3 Ga recorded by one interstitial sulfide, having similar TDM and TRD, should be meaningful to deep thermal event. The coexistence of different ages, revealed by in situ Re-Os isotope, indicates frequently-occurring mantle events beneath Hannuoba area.  相似文献   

16.
Cratonic destruction or lithospheric thinning beneath North China makes it as one of the most ideal areas for the studying on the formation and evolution of continent. However, the mechanism, time, range and dynamic setting of the destruction, even the lithospheric status before the destruction, are contentious. The comparison among mantle xenoliths in the volcanic rocks from different captured times (e.g. Paleozoic, Mesozoic and Cenozoic) and locations (e.g. intra-plate or its rim, the translithospheric Tanlu fault or the North-South Gravity Line), and peridotitic massifs within the Sulu-Dabie ultrahigh-pressure metamorphism belt along the southern margin of the North China Craton, indicates that (1) the cratonic lithosphere is heterogeneous in structure and composition, and contains mantle weak zones; and (2) the Mesozoic-Cenozoic lithospheric thinning process is complex, including lateral spreading of lithosphere, interaction between melt and peridotite, non-even asthenospheric erosion (huge lithospheric thinning), and the limited lithospheric accretion and thus thickening, which resulted in the final replacement of the refractory cratonic lithosphere by juvenile fertile mantle. In early Mesozoic, the integrity of the North China Craton was interrupted, even destroyed by subduction and collision of the Yangtze block. The mantle wedge of the North China Craton was also metasomatized and modified by melt/fluids revealed from the subducted Yangtze continent. Lithospheric mantle extension and tectonic intrusion of the North China Craton also occurred, accompanied by the asthenospheric upwelling that due to the detachement of the subducted Yangtze continent (orogenic root). During early Cretaceous-early Tertiary, the huge thinning of lithosphere was triggered by the upwelling asthenosphere due to the subduction of the Pacific plate. Since late Tertiary, the cooling of the upwelling asthenosphere resulted in the replacement of the mantle in existence by the newly accreted lithosphere, accompanied with a little thickness in lithosphere and thus finally achieved the lithospheric thinning as a whole. The translithospheric faults, such as the Tanlu fault, play excellent channels for asthenospheric upwelling. Meanwhile, the channels in lithosphere are usually irregular, which resulted in different eruption times of magma. Peridotite xenolith in the basalts erupted at 100 Ma is mainly fertile, indicating such a fact, that is, the mantle replacement occurred before the eruption (e.g. 125--100 Ma) beneath the eastern part of the North China Craton.  相似文献   

17.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

18.
The northern margin of the North China Craton (NCC), located between the Paleo-Asian Ocean tectonic region on the north and the NCC on the south, is a key region for studying the tectonic evolution of NCC. A Pre-cambrian retrograded eclogite (2500 Ma or 1800 Ma) was reported in Baimashi near Hengshan Mountain in the NCC, which is characterized by the vermicular symplec-tite of diopside and plagioclase with absence of ompha-cite[1,2]. In Hongqiyingzi Group from the middle part of the …  相似文献   

19.
李梦莉 《长春大学学报》2009,19(9):101-104,107
交互性是口语测试的重要特征。本文从Bachman &amp; Palmer交互性模式和McNamara交互性模式两个不同的角度分析了口语测试交互性的内涵,认为口语测试交互性不仅包括受试者与考试任务间的交互,还包括考生—考官交互和考生考生交互等交互形式。文章还指出:交互性是相对的,与测试的构念效度有关,对一项口语测试交互性的要求应该与其他测试特征取得平衡。  相似文献   

20.
Backscattered electron images, in situ Hf isotopes, U-Pb ages and trace elements of zircons in a banded granulite xenolith from Hannuoba basalt have been studied. The results show that the banded granulite is a sample derived from the early lower crust of the North China craton. It is difficult to explain the petrogenesis of the xenolith with a single process. Abundant information on several processes, however, is contained in the granulite. These processes in-clude the addition of mantle material, crustal remelting, metamorphic differentiation and the delamination of early lower crust. About 80% of zircons studied yield ages of 1842 ±40 Ma, except few ages of 3097-2824 Ma and 2489-2447 Ma. The zircons with ages older than 2447 Ma have high εHf (up to +18.3) and high Hf model age (2.5-2.6 Ga), indicating that the primitive materials of the granulite were derived mainly from a depleted mantle source in late Archean. Most εhf of the zircons with early Proterozoic U-Pb age vary around zero, but two have  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号