首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了图的r(2)点染色的概念,研究了扇Fn、轮Wn、完全图Kn的r(2)点染色问题,并得到了它们的r(2)点色数.  相似文献   

2.
给出了联图Pn∨P2的星边色数和联图Pn∨Pn,Pm∨Pn星边色数的上界,同时也给出了一种简单易行的星边染色方法.  相似文献   

3.
研究了Pm ∨ Pn的点可区别边染色,并得到了Pm ∨ Pn的点可区别边色数.  相似文献   

4.
图G的一个正常边染色是指对G的每条边分配一种颜色使得任意相邻的两条边的颜色不同.图G的正常边染色f称为D(r)-点可区别边染色,如果对G中任意两个距离不超过r的顶点u,v∈V(G),有C'(u)≠C'(v),其中C'(x)={f(xy):xy∈E(G)}.图G的D(r)-点可区别边色数是指对图G进行D(r)-点可区别边...  相似文献   

5.
图G的一个k-(2,1)-全标号是一个映射f:V(G)∪E(G)→{1,2,…,k}使得相邻的顶点标不同的号;相邻的边标不同的号;顶点与所关联的边标号数相差至少为2.图G的(2,1)-全标号数λT2(G)定义为G有一个k-(d,1)-全标号的最小的k值.研究路与路的联图Pm∨Pn的(2,1)-全标号问题,并给出Pm∨Pn的(d,1)-全标号数的上界.  相似文献   

6.
图G的I-全染色是指对图G的顶点和边染色,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.图G的一个I-全染色称为是邻点可区别的,如果任意两个相邻顶点u,v的色集合C(u)≠C(v),这里C(u)={f(u)}∪{f(uv)|uv∈E(G)}.而图G的邻点可区别I-全染色中所用的最少色数称为图G的邻点可区别I-全色数.讨论路与扇的联图Pm∨Fn、路与轮联图Pm∨Wn的邻点可区别I-全染色问题,根据这类图的结构性质运用色构造法给出它们的邻点可区别I-全染色方法,从而有效地确定其邻点可区别I-全色数.  相似文献   

7.
图G的一个正常边染色如果满足任意两个不同点的关联边色集不同,且任意两种颜色所染边数目相差不超过1,则称为点可区别的边染色,其所用的最少的颜色数称为图G的点可区别均匀边色数.运用组合方法研究联图Pm∨Fn的点可区别完全均匀边染色,得到当m=1,2,3,4,n+1时的Pm∨Fn的点可区别均匀边色数.  相似文献   

8.
图G的全色数XT(G)是使得V(G)U∪E(G)中相邻或相关联的元素均染不同颜色的最少颜色数目.如果XT(G)=△(G)+1,则记如果XT(G)=△(G)+2,则记G∈.两个图G和H的联图G∨H是一个简单图,使得V(G∨H)=V(G)∪V(H),E(G∨H)=E(G)∪E(H)∪{uv(G),v∈(H)}.本文证明了对任意的两个正整数m和n,Pm∨Pn∈当且仅当m=n=2或m=n=1,从而完全确定了两个路的联图的全色数.  相似文献   

9.
偶度二部图的边可分拆为若干偶圈之并,且任意一个无向简单图G,有|E(G)|-γ'ss(G)为偶数。本文确定了联图Pm∧Pn的符号星控制数。  相似文献   

10.
用数学归纳法、反证法及构造具体染色函数法,并结合Hall定理讨论单圈图的D(2)-点可区别边染色,并给出其确切的D(2)-点可区别边色数.  相似文献   

11.
根据点可区别全染色的概念及其染色方法,讨论了路与轮联图的点可区别全染色,给出了路与轮联图的点可区别全色数的结论及其证明,为进一步探讨其他联图的点可区别全染色提供了理论证据,丰富了图的点可区别全染色的结果.  相似文献   

12.
【目的】为了确定联图mC_(2t)∨nC_(2t)点可区别Ⅰ-全染色和点可区别Ⅵ-全染色。【方法】如果?u,v∈V(G)且u,v相邻,就有f(u)≠f(v)并且?e_1,e_2∈E(G)且e_1,e_2相邻,就有f(e_1)≠f(e_2),则称f为图G的Ⅰ-全染色;如果?e_1,e_2∈E(G)且e_1,e_2相邻,就有f(e_1)≠f(e_2),则称f为图G的Ⅵ-全染色。令C(u)={f(u)}∪{f(uv)∣uv∈E(G)}是u的色集合(非多重集)。对图G的一个Ⅰ-全染色(分别地,Ⅵ-全染色)f,一旦?u,v∈V(G),u≠v,就有C(u)≠C(v),则f为图G的点可区别的Ⅰ-全染色(或点可区别Ⅵ-全染色),简称为VDIT染色(分别地,VDVIT染色)。对图G进行点可区别Ⅰ-全染色所需要最少的颜色的数目记为χ_(vt)~i(G),称χ_(vt)~i(G)为图G的点可区别Ⅰ-全色数。对图G进行点可区别Ⅵ-全染色所需要最少的颜色的数目记为χ_(vt)~(vi)(G)。称χ_(vt)~(vi)(G)为图G的点可区别Ⅵ-全色数。本文利用构造具体染色的方法。【结果】构造了mC_(2t)∨nC_(2t),其中t≥3的最优点可区别Ⅰ-全染色和点可区别Ⅵ-全染色,给出了联图mC_(2t)∨nC_(2t),其中t≥3的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数。【结论】VDITC猜想及VDVITC猜想对联图mC_(2t)∨nC_(2t)是成立的。  相似文献   

13.
记χat'e(G)为图G的邻点可区别E-全色数.若Pm是m阶的路,Sn是n+1阶的星,且nm≥2,则χate(Pm∨Sn)=4;若Pm是m阶的路,Fn是n+1阶的扇,且m≥2,n≥2,则χate(Pm∨Fn)=5;若Pm是m阶的路,Wn是n+1阶的轮,且m≥2,n≥3,如果n≡0(mod 2),则χate(Pm∨Wn)=5,如果n≡1(mod 2),则χate>(Pm∨Wn)=6;若Pm是m阶的路,Kn是n阶完全图,且n≥4,m≥2,则χate+(Pm∨Kn)=n+2.  相似文献   

14.
对网G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该罔的点可区别边色数.得到了路与轮的联网的点可区别边色数。  相似文献   

15.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区别边色数.得到了路与轮的联图的点可区别边色数.  相似文献   

16.
设G是顶点集合为V(G)={v_(0i)|i=1,2,…,p}的简单图,n是正整数,称M_n(G)为G上的锥(或广义Mycielski图),如果V(M_n(G)={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…v_(n1),v_(n2),…,v_(np),w}) E(M_n(G))=E(G)∪{v_(ij)v_((i 1)k)|v_(0j)v_(0k)∈E(G),1≤j,k≤p,i=0,1,…,n-1}∪{v_(nj)w|1≤j≤p}.在这篇文章里,我们讨论了完全图上的锥的$D(2)$-点可区别的正常边染色,并给出了相应色数.  相似文献   

17.
若干积图的点可区别边染色   总被引:2,自引:0,他引:2  
证明了:(1)两个n(n2)阶完全图的积图的点可区别边色数为2n. (2)对阶至少是3的完全图Kn,若χ′vd(G)=Δ(G),则χ′vd(G×Kn)=n+Δ(G).(3)若χ′vd(Gi)=Δ(Gi),i=1,2,则χ′vd(G1×G2)=Δ(G1)+Δ(G2).  相似文献   

18.
马强  马刚  田富鹏 《甘肃科技》2012,28(9):64-66
对一个正常的边染色满足不同点的点所关联边色集合不同,称为点可区别边染色(VDEC),其所用最少染色数称为点可区别边色数.就此用构造法研究了一些Double图的点可区别边染色,得到了星、扇和轮的Double图的点可区别边色数,验证了它们满足点可区别边染色猜想(VDECC).  相似文献   

19.
若一个正常全染色其相邻顶点的色集不同时,就称之为邻点可区别全染色,邻点可区别全染色所用颜色的最小数称为邻点可区别全色数.本文研究了联图Wm∨Pm(n≥4)的邻点可区别全色数。  相似文献   

20.
邻点可区别全染色是在全染色的基础上,要求相邻顶点的色集合互不相同.通过设计染色方案,给出轮与圈的联图Wm∨Cn的邻点可区别全色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号