首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设k1,...,km是正整数,若对每个x∈V(G)有dG(x)≤k1+...+km-m+1,H是G的一个m-{m1-星,...,mn-星}-子图,则图G有一个[0,ki]m1-因子分解与H正交.  相似文献   

2.
设N2m+1(x)是2m+1阶B-样条尺度函数,其两尺度符号为P(x)=[(1+z)/2]^2m+1.给出了N2m+1(x)对应的一个短支撑反对称小波ψ(x)的显式构造,即ψ(x)=^2m+1∑k=0(-1)^k2^-2m(^2m+1k)N2m+1(2x-k),其对应的两尺度符号Q(z)=P(-z).所构造的小波ψ(x)与N2m+1(x)有相同的支撑区间,这方便了它的应用.另外也给出了N2m+1(x)的对偶尺度函数N^~2m+1(x)以及ψ(x)的对偶小波ψ^-(x)的构造.N^~2m+1(x)和ψ^-(ψ)也都具有对称性.特别地,如果设G(z),H(z)分别为N^~2m+1(x)和ψ^-(x)的两尺度符号,则G(z),H(z)也具有H(z)=G(-z)^——的关系.基于所构造的ψ(x)和ψ^-(x),建立了相应的小波分解与重构的算法.最后给出了一个构造算例.  相似文献   

3.
设G=(x,y)是一个二部图,若|X+=|Y|,则称G是一个均衡二部图,文章证明了设G是2n阶均衡二部图,对任意正整数k≥2,若n≥4k-3,且最小度δ(G)≥n+2(k-1)/2,则任给G的一个完美匹配M,G中存在一个包含M的所有边的恰含k个分支的M-2-因子。  相似文献   

4.
设G是一个阶为n的图,a,b,k为正整数且1≤a〈b,2≤k≤[b/a],δ(G)为G的顶点的最小度.若δ(G)≥a,n≥(a+b)(k(a+b)-2)/b,且对V(G)的任意独立子集{x1,x2,…,xk}有|NG(x1)∪NG(x2)∪…∪NG(xk)|≥an/(a+b),则G存在[a,b]-因子.  相似文献   

5.
与任意图2-正交的(g,f)-因子分解   总被引:4,自引:0,他引:4  
设G是一个图,用V(G)和E(G)表示它的顶点集和边集,并设g(x)和f(x)是定义在V(G)上的两个整数值函数,且对每个x∈V(G),有4≤g(x)≤f(x),则图G的一个支撑子图F称为G的一个(g,f)-因子,如果对每个x∈V(G),有g(x)≤dF(x)≤f(x)。图G的(g,f)-因子分解是指E(G)能划分成边不交的(g,f)-因子,设F={F1,F2,…,Fm}和H分别是图G的因子分解和子图,若对所有1≤i≤m有|E(H)∩E(Fi)|=2,则称F和H2-正交。本文证明:若G是一个(mg m-1,mf-m 1)-图,H是G中任一有2m条边的子图,则G有一个(g,f)-因子分解与H2-正交。  相似文献   

6.
设G是一个顶点集为V(G),最小度为δ(G),独立数为α(G)的图, k≥2是整数。图G的支撑子图F称作是图G的分数k-因子,如果对于每一个x∈V(F)都有dhG(x)=k。如果对于图G的每条边e,图G都有一个分数k-因子包含它而且同时有一个分数k-因子不包含它,则称图G为分数k一致图。证明了如果δ( G)≥k+2,且α( G)≤4k(δ-k-1)(k+1)2,则图G是一个分数k一致图。  相似文献   

7.
利用因子理论中的常规方法证明了汪长平提出的猜想对二分图是成立的。其结论是:若G是一个二分(mg+k-1,mf-k+1)-图,1≤k≤m,H是G中一个给定的有k条边的子图,则G存在一个子图R,使得尺有一个(g,f)一因子分解与正交。  相似文献   

8.
设 G是一个图 ,用 V(G)和 E(G)表示它的顶点集和边集 ,并设 g(x)和 f (x)是定义在 V(G)上的两个整数值函数 ,且对任意的 x∈ V(G)有 0≤ g(x) 相似文献   

9.
设g和f分别是定义在图G的顶点集合V(G)上的两个整数值函数且对每个x∈V(G)有3≤g(x)≤f(x)。本文证明了:若G是一个(mg+k,mf-k)-图,其中1≤k相似文献   

10.
对∞∑n=1(-1)^n=1 1/(n+k1)+(n+k2)+…+(n+km)n≥1 1≤k1〈k2〈…〈km m≥给出求和方法。对四类方程f(x,y,z)=0证明在奇异点处,无切平面。对n维单位球体体积Vn(n≥2) n=5 V5体积最大,lim n→+∞Vn=0  相似文献   

11.
设g和f是两个定义在图G顶点集上的整值函数,使得对G的所有顶点x有g(x)≤f(x)。证明了以下结果:如果G是一个(mg+r,mf-r)-图,1≤r相似文献   

12.
设g和f分别是定义在图G的顶点集合V(G)上的整数值函数,且对每个x∈V(G)有k-1≤g(x)<f(x),给出了(mg m-1,mf-m 1)-图是随机(m,k)-正交的(g,f)-可因子化图的一个充分条件。  相似文献   

13.
设n和r是正整数使得r≥n+1≥4.一个图被称为K1,n-free图,如果它不含导出子图K1,n。证明了:若G是一个有圈H的图且r|V(G)|为偶数,G—E(H)是连通的K1,n-free图且G—E(H)的顶点最小度至少是(n(r+1)-3/r-2)[rn-2/2(n-1)]-n-1/r-2([rn-2/2(n-1)])^2+n-3那么G有r-因子F包含H中的所有的边.  相似文献   

14.
对图G及正整数k,映射σ:VUE→{1,2,…,k}满足:(1)任意e1,e2∈VUE,如果e1,e2是相邻或相关联的,则有σ(e1)≠σ(e2);(2)对u,v,w∈V(G),uw,vw∈E(G),uv¢E(G)有σ(u)≠σ(v),则称σ为G的一个k-点强全染色,并且xτ^vs(G)={k|存在G的k点强全染色},称为G的点强全色数.研究了六色系统图G的点强全色数,得到△(G)+l≤xτ^vs;(G)≤△(G)+2,其中△(G),xτ^vs(G)分别表示G的最大度和点强全色数.  相似文献   

15.
该文主要证明了若G=(V1,V2:E)是一个满足|V1|=|V2|=n≥sk的二分图,其中k,s,n为3个正整数且k≥2,s≥4,如果σ1,1(G)σ2[(1-1/s)n+k],那么对G的任意k条独立边e1,…,ek,G有一个包含k个点不交的圈C1,…Ck的2-因子,使得ei∈E(Ci),且|Ci|≥2s.  相似文献   

16.
设f是定义在图G的顶点集V(G)上的整数值函数,且对每个x∈V(G)有1≤f(x);证明了若G是一个(0,mf-m+1)-图,则对G中任意给定的2m-对集M,G有一个(0,f)一因子分解2-正交于。  相似文献   

17.
设k是一个正整数,图G是一个具有n个顶点的图,其中n≥4k+8,nk是偶数且δ(G)〉;k+1。我们证明如果图G的任意两个不相邻的顶点u,v都有max{dG(u),dG(v)}〉;n/2,则图G含有一个连通的[k,k+1]-因子不包含任意指定的边。  相似文献   

18.
设R是实数域,H是维数≥2的实的Hilbert空间并且A=H+R·1为对应于的Spin因子.如果从A到它自身的双射Ф满足:(1)任给a,b,c∈A,都有Ф({abc})={Ф(a)Ф(b)Ф(c)};(2)Ф|R·1是可加的,则H上存在唯一的酉元U,使得任给x∈H,α∈R,都有Ф(x+α·1)=Ux+α·1或Ф(x+α·1)=-Ux-α·1.  相似文献   

19.
设G是一个图且a、b为非负整数,a≤ b。图G的一个[a ,b]-因子是图G的一个支撑子图H ,且满足对所有的 x ∈ V (G),a ≤ dH (x)≤ b都成立。文章研究了最小度与[a ,b]因子之间的关系,证明了若δ(G)≥(a+ b)n/(a+2b),那么G中总有[a ,b]-因子不包含给定独立集I。  相似文献   

20.
设g和f是定义在图G的顶点集合V(G)上的两个整数值函数。本文证明了如下结果:设r是一个正整数,G是一个(mg 1,mf-(m-1)r)-图,1≤r≤m-1,若对每个x∈V(G)均有g(x)≥2r-1,H是G的有mr条边的子图,则G有(g,f)-因子分解与H(m,r)-正交。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号