首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H C Oettgen  C L Pettey  W L Maloy  C Terhorst 《Nature》1986,320(6059):272-275
Antigen recognition by human T lymphocytes and initiation of T-cell activation are mediated by a group of integral membrane proteins, the T-cell antigen receptor (TCR) and the T3 complex. The polypeptides which comprise T3 (a gamma-chain of relative molecular mass (Mr) 25,000 (25K), and delta and epsilon chains of 20K each) are physically associated with the TCR chains. Surface expression of the complex requires the presence of all the component T3 and TCR proteins. In contrast to the human system, murine T3 has not been identified using antibodies. Here we describe a murine T3-like protein complex. It appears to be more complicated than human T3, containing three monomeric glycoproteins (21-28K), two of which have N-linked carbohydrate side chains and a novel family of TCR-associated homo- and heterodimers. The 28K protein is identified as the murine T3 delta-chain. The 21K protein is phosphorylated on cell activation with concanavalin A (Con A).  相似文献   

2.
Leprosy displays a remarkable spectrum of symptoms correlating with the T-cell-mediated immune reactivity of the host against the causative organism, Mycobacterium leprae. At one pole of this spectrum are lepromatous leprosy patients showing a M. leprae-specific T-cell unresponsiveness; at the other are tuberculoid leprosy patients displaying both acquired immunity and delayed-type hypersensitivity against M. leprae which are thought to be conferred by helper T (Th) cells. Because well-defined M. leprae antigens are crucial for the prevention and control of leprosy, we have cloned M. leprae-reactive T cells (TLC) of the helper phenotype from a tuberculoid leprosy patient. As reported here, these TLC show an unexpected diversity in the recognition of M. leprae and related mycobacteria, which is different from that exhibited by monoclonal antibodies. Half of these TLC are completely or almost M. leprae-specific, whereas the other half are cross-reactive with most or all other mycobacteria. A M. leprae protein of relative molecular mass (Mr) 36,000 (36K) defined by a M. leprae-specific monoclonal antibody stimulates 4 out of 6 TLC tested. Each of these TLC recognizes a different antigenic determinant, one of which is M. leprae-specific. The previous paper describes other M. leprae-specific T-cell clones half of which recognize an epitope on a M. leprae protein of Mr 18 K.  相似文献   

3.
Bcl-6是滤泡辅助性T细胞(Tfh)的亚群决定转录因子,在Tfh细胞分化和功能调节过程中发挥关键作用.Bcl-6调控Tfh细胞的分子机制及其受到的精密分子调控受到广泛研究,近年来已取得了一定的进展.该文回顾了Bcl-6被鉴定为Tfh细胞亚群转录决定因子的研究历程,总结Bcl-6在Tfh细胞中的功能,综述Tfh细胞调控Bcl-6表达机制的研究进展,并对Bcl-6研究中的潜在问题和未来研究方向进行了展望.  相似文献   

4.
J R Lamb  M Fledmann 《Nature》1982,300(5891):456-458
  相似文献   

5.
Receptor-directed focusing of lymphokine release by helper T cells   总被引:28,自引:0,他引:28  
W J Poo  L Conrad  C A Janeway 《Nature》1988,332(6162):378-380
The interaction between helper T cells and B cells, leading to the production of antibody to thymus-dependent antigens, was the first cell interaction clearly defined in the immune system; it remains both paradigmatic and controversial. Two requirements of this interaction, that the helper cell (TH) and the B cell must recognize antigenic determinants that are physically linked, and that the TH and the B cell must share genes encoding major histocompatibility complex (MHC) class II molecules, led to the concept that TH-B interaction required an intimate physical association of the two cell types. But in vitro studies have shown that TH can be replaced by soluble, antigen-nonspecific factors, capable of activating any B cell to secrete antibody. We have previously proposed that the requirements for TH-B contact might result from TH cells releasing their lymphokines in a polar fashion directed at that portion of the cell membrane where T-cell receptor cross-linking is actually occurring. Using an artificial monolayer of a cloned helper T-cell line, we show that lymphokines are released preferentially over the area of receptor cross-linking under conditions of limited TH-cell activation. Thus, it appears that one important aspect of the specificity of TH-B cell interactions is the receptor-directed polar release of helper lymphokines.  相似文献   

6.
7.
F Rupp  H Acha-Orbea  H Hengartner  R Zinkernagel  R Joho 《Nature》1985,315(6018):425-427
T lymphocytes involved in the cellular immune response carry cell-surface receptors responsible for antigen and self recognition. This T-cell receptor molecule is a heterodimeric protein consisting of disulphide-linked alpha- and beta-chains with variable (V) and constant (C) regions. Several complementary DNA and genomic DNA clones have been isolated and characterized. These analyses showed that the genomic arrangement and rearrangement of T-cell receptor genes using VT, diversity (DT), joining (JT) and CT gene segments is very similar to the structure of the known immunoglobulin genes. We have isolated two cDNA clones from an allospecific cytotoxic T cell, one of which shows a productive V beta-J beta-C beta 1 rearrangement without an intervening D beta segment. This V beta gene segment is identical to the V beta gene expressed in a helper T-cell clone specific for chicken red blood cells and H-21. The other clone carries the C beta 2 gene of the T-cell receptor, but the C beta 2 sequence is preceded by a DNA sequence that does not show any similarity to V beta or J beta sequences.  相似文献   

8.
R Tees  M H Schreier 《Nature》1980,283(5749):780-781
An antibody response is the end result of complex interactions among T cells, adherent cells and B cells. An understanding of the interactions involved has proved difficult as pure populations of these cells have not been available. By making use of T-cell growth factor, we were able to grow normal helper T cells specific for heterologous erythrocytes. Because specificity and mechanism of action of these cells had been demonstrated solely in culture, we sought to establish their competence in the whole animal. We have therefore examined here whether antigen-specific helper T cells, maintained in culture over long periods, would enable syngeneic nude mice to respond to T-cell dependent antigens. The results show that specific helper T cells, propagated in serum-free medium in vitro for up to 15 months, can selectively and specifically reconstitute syngeneic C57BL/6J nu/nu mice. Depending on the specificity of the injected helper T cells, such nude mice could respond to sheep red blood cells (SRC) but not to horse red blood cells (HRC) and vice versa. The magnitude of the response was comparable to that of normal mice and could exceed it by almost 10-fold, depending on the source and number of injected helper T cells.  相似文献   

9.
A Shore  H Dosch  E W Gelfand 《Nature》1978,274(5671):586-587
  相似文献   

10.
11.
T lymphocytes can be activated by various stimuli directed either against the T-cell antigen receptor-CD3 antigen complex (Ti-CD3) or the CD2 molecule; see ref. 1 for a review. Activation signals generated by antigen binding to the antigen-specific alpha/beta heterodimer (Ti) are thought to be transduced via the invariant CD3 gamma, epsilon and delta chains, and the associated zeta and eta subunits. The physiological role of the interaction of CD2 with its homologous cell-surface associated ligand LFA-3 remains to be fully elucidated. It has been suggested that CD2 regulates an antigen-independent pathway of activation or that signals delivered via CD2 are an integral part of the antigen-specific pathway. Several recent studies have indicated a requirement for the Ti-CD3 complex in CD2 signalling. Thus, mutant T-cell lines expressing CD2, but not Ti-CD3, on the cell surface cannot be activated via the CD2 molecules. Functional interaction between the Ti-CD3 complex and the CD2 antigen suggests that these T-lymphocyte cell-surface structures are physically associated. Here we use a digitonin-based solubilization procedure to explore this possibility and show that 40% of the cell-surface CD2 molecules can be specifically co-precipitated in association with the Ti-CD3 complex.  相似文献   

12.
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. A characteristic feature of the disease is its remarkable spectrum of clinical symptoms correlating with the cellular immune responsiveness of the patient. At one pole of this spectrum are tuberculoid patients displaying both acquired cell-mediated immunity and delayed type hypersensitivity against the bacillus. At the other pole are lepromatous patients which show a specific T-cell unresponsiveness against M. leprae. In between those two poles variable degrees of tuberculoid and lepromatous features may be seen in borderline leprosy patients. Thus far, studies on the mechanism of the antigen specific unresponsiveness in lepromatous leprosy have been contradictory and difficult to interpret, probably because of the use of heterogeneous cell populations in those experiments. We have now succeeded in cloning M. leprae stimulated T-helper (TH) as well as T-suppressor (TS) cells from a borderline lepromatous patient. The TS-clones of this patient specifically suppress responses of peripheral TH cells as well as TH clones induced by both M. leprae and other mycobacteria, but not unrelated antigen or mitogen. These TS cells also completely suppress TH cell responses against a M. leprae specific protein with a relative molecular mass of 36,000 (36K), suggesting the presence of a suppression inducing determinant on this 36K M. leprae protein.  相似文献   

13.
M Londei  J R Lamb  G F Bottazzo  M Feldmann 《Nature》1984,312(5995):639-641
The first step in the induction of immune responses, whether humoral or cell mediated, requires the interaction between antigen-presenting cells and T lymphocytes restricted at the major histocompatibility complex (MHC). These cells invariably express MHC class II molecules (HLA-D region in man and Ia in mouse) which are recognized by T cells of the helper/inducer subset in association with antigen fragments. Interestingly, in certain pathological conditions, for example in autoimmune diseases such as thyroiditis and diabetic insulitis, class II molecules may be expressed on epithelial cells that normally do not express them. We speculated that these cells may be able to present their surface autoantigens to T cells, and that this process may be crucial to the induction and maintenance of autoimmunity. A critical test of this hypothesis would be to determine whether epithelial cells bearing MHC class II molecules (class II+ cells) can present antigen to T cells. We report here that class II+ thyroid follicular epithelial cells (thyrocytes) can indeed present viral peptide antigens to cloned human T cells.  相似文献   

14.
15.
Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres. The mutation disrupts a repressor of ICOS, an essential co-stimulatory receptor for follicular T cells, and results in excessive production of the cytokine interleukin-21. sanroque mice fail to repress diabetes-causing T cells, and develop high titres of autoantibodies and a pattern of pathology consistent with lupus. The causative mutation is in a gene of previously unknown function, roquin (Rc3h1), which encodes a highly conserved member of the RING-type ubiquitin ligase protein family. The Roquin protein is distinguished by the presence of a CCCH zinc-finger found in RNA-binding proteins, and localization to cytosolic RNA granules implicated in regulating messenger RNA translation and stability.  相似文献   

16.
17.
The regulation of the subclass of immunoglobulin secreted by B cells has been studied in vitro in polyclonal systems using mitogens, such as lipopolysaccharide (LPS), to bypass the requirement for cognate interaction between antigen-specific T and B cells. In these systems, interleukin-(IL)-4 induces the secretion of IgG1 (ref. 1) and IgE (ref. 2); IL-5 enhances the secretion of IgA, and interferon-gamma (IFN-gamma) enhances the secretion of IgG2a (ref. 5). Clones of murine TH cells can be divided into two subsets, TH1 and TH2 (ref. 6). Both subsets synthesize IL-3 and granulocyte-monocyte colony-stimulating factor (GM-CSF), but only TH1 clones produce IL-2, IFN-gamma, and lymphotoxin (LT) and TH2 clones produce IL-4 and IL-5 (ref. 7). We have examined the role of clones of antigen-specific TH1 and TH2 cells in the regulation of the subclasses of IgG antibody secreted by antigen-specific B cells. Our results show that both types of TH cells induce the secretion of IgM and IgG3, whereas clones of TH1 and TH2 cells specifically induce antigen-specific B cells to secrete IgG2a and IgG1, respectively. We also demonstrate that regulation of commitment to the secretion of a particular IgG isotype occurs in two distinct stages: cognate interaction between T and B cells and interaction between T-cell-derived lymphokines and B cells.  相似文献   

18.
J Zikherman  R Parameswaran  A Weiss 《Nature》2012,489(7414):160-164
In humans, up to 75% of newly generated B cells and about 30% of mature B cells show some degree of autoreactivity. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model B-cell antigen receptor (BCR) transgenic systems have highlighted the critical role of functional unresponsiveness or ‘anergy’. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B-cell tolerance. However, it remains unclear whether the mature diverse B-cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which BCR signalling rapidly and robustly induces green fluorescent protein expression under the control of the Nur77 regulatory region, antigen-dependent and antigen-independent BCR signalling events in vivo during B-cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure, in turn, tunes the responsiveness of BCR signalling in B cells at least partly by downmodulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or anergy exists in the mature B-cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease.  相似文献   

19.
I Bank  R A DePinho  M B Brenner  J Cassimeris  F W Alt  L Chess 《Nature》1986,322(6075):179-181
The known T-cell receptors (TCRs) involved in the recognition of antigen and major histocompatibility complex (MHC) molecules are glycoproteins comprised of polymorphic disulphide-linked alpha- and beta-chains. The genes encoding these chains are homologous to immunoglobulin genes and consist of V (variable), J (joining) and C (constant) regions that rearrange during development. TCRs are expressed relatively late in thymocyte development and only in association with an invariant molecular complex of proteins termed T3. Immature thymocytes do not express the TCR-T3 complex but do express messenger RNA encoding a third rearranging T-cell receptor-like gene, termed T gamma. Here we report a clone of normal immature T4-T8- human thymocytes, designated CII, which does not express mature mRNA for T alpha or T beta genes, but does express high levels of T gamma mRNA. This clone also expresses high levels of surface T3, and antibodies to T3 induce immunologically relevant functions in CII cells. Immunoprecipitation of CII surface-labelled proteins with anti-T3 co-precipitates a T3 molecular complex together with two additional and novel peptides of relative molecular mass (Mr), 44,000 (44K) and 62,000 (62K).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号