首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 石墨烯材料具有优异的导电性、柔性、化学稳定性等特征,在印刷电子领域中具有广阔的应用前景。概述了石墨烯材料的宏量制备方法,结合喷墨打印、丝网印刷和3D打印等方法介绍了石墨烯墨水制备的技术特点和要求,展示了石墨烯在印刷电子功能器件中的应用,主要类型包括透明导电薄膜、柔性电路、超级电容器和可穿戴传感器等。总结了该领域当前研究进展中存在的问题和挑战,从材料设计、加工制备和器件应用方面进行了展望。在未来发展中可通过丰富石墨烯打印线路的结构形式,并注重利用组装的策略增强结构有序性,实现多功能、高性能的器件制备和应用。  相似文献   

2.
Graphene attracts more and more scientists and researchers owing to its superior electronic,thermal,and mechanical properties.For material scientists,graphene is a kind of versatile building blocks,and considerable progress has been made in recent years.Graphene-based hybrid materials have been prepared by incorporating inorganic species and/or cross-linking of organic species through covalent and/or noncovalent interactions.The graphene-based hybrid materials show improved or excellent performance in various fields.In this review,we summarize the synthesis of graphene and graphene-based hybrid materials,and their applications in energy storage and conversion.  相似文献   

3.
应用于金属基双极板的石墨烯基涂层引起人们广泛的兴趣。综述了目前金属基双极板面临的问题,总结了已经报道的关于制备石墨烯基涂层的方法(化学气相沉积法、电沉积法、喷涂法、自组装方法)以及这些方法的优缺点。石墨烯优良的阻隔性能可以充当金属基双极板的钝化膜,对石墨烯进行改性或者对金属基双极板进行表面处理可以有效地改善石墨烯涂层与金属基双极板的相容性。导电聚合物可以有效地改善石墨烯涂层与金属基之相容性,并且能够填补石墨烯片层间的缝隙,提高涂层的致密度。导电聚合物能够以石墨烯为模板进行生长,降低涂层的表面粗糙度。最后提出对石墨烯改性以增强其与金属基双极板的相容性,以及发挥其与导电聚合物协同效应是未来的研究方向之一。  相似文献   

4.
Graphene-based composite materials   总被引:31,自引:0,他引:31  
Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.  相似文献   

5.
Graphene-based materials have been full of vigor and tremendous potentiality for application in supercapacitors due to its variety of unique properties such as electronic properties, simple synthesis, etc. In developing new macroscopic nanostructured graphene materials for supercapacitors, considerable efforts have been made by the scientist including our research group. In this account, we describe our development of the construction of the assembled graphene especially fiber and foam, which have great potential in addressing the challenges in the synthesis of graphene-based electrode materials for supercapacitors. As the supercapacitors are reviewed in this article, they are accordant with the rapid development of flexible, lightweight, and wearable-electronic devices, overcoming the major some drawbacks of conventional bulk supercapacitors. We hope that this summary will benefit the further research of graphene-based materials for the applications in electrochemical energy storage devices and beyond.  相似文献   

6.
Graphene is an interesting two-dimensional carbon allotrope that has attracted considerable research interest because of its unique structure and physicochemical properties. Studies have been conducted on graphene-based nanomaterials including modified graphene, graphene/semiconductor hybrids, graphene/metal nanoparticle composites, and graphene-complex oxide composites. These nanomaterials inherit the unique properties of graphene, and the addition of functional groups or the nanoparticle composites on their surfaces improves their performance. Applications of these materials in pollutant removal and environmental remediation have been explored. From the viewpoint of environmental chemistry and materials, this paper reviews recent important advances in synthesis of graphene-related materials and their application in treatment of environmental pollution. The roles of graphene-based materials in pollutant removal and potential research are discussed.  相似文献   

7.
Graphene-based materials have attracted much attention in recent years. Many researchers have demonstrated prototypes using graphene-based materials, but few specific applications have appeared. Graphenebased acoustic devices have become a popular topic. This paper describes a novel method to fabricate graphenebased earphones by laser scribing. The earphones have been used in wireless communication systems. A wireless communication system was built based on an ARM board. Voice from a mobile phone was transmitted to a graphene-based earphone. The output sound had a similar wave envelope to that of the input; some differences were introduced by the DC bias added to the driving circuit of the graphene-based earphone. The graphene-based earphone was demonstrated to have a great potential in wireless communication.  相似文献   

8.
为了有效地发掘和利用异构系统在应用和体系结构上的并行性,以冷冻电镜三维重构为例展示如何利用应用程序潜在的并行性.通过分析重构计算所有的并行性,实现了将动态自适应的划分算法用于任务在异构系统上高效的分发.在曙光星云系统的部分节点系统(32节点)上评估并行化的程序性能.实验证明:多层次的并行化是CPU与GPU异构系统上开发并行性的有效模式;CPU-GPU混合程序在给定问题规模上相对单纯CPU程序获得2.4倍加速比.  相似文献   

9.
Graphene has unique physical properties,and a variety of proof-of-concept devices based on graphene have been demonstated.A prerequisite for the application of graphene is its production in a controlled manner because the number of graphene layers and the defects in these layers significantly influence transport properties.In this paper,we briefly review our recent work on the controlled synthesis of graphene and graphene-based composites,the development of methods to characterize graphene layers,and the use of graphene in clean energy applications and for rapid DNA sequencing.For example,we have used Auger electron spectroscopy to characterize the number and structure of graphene layers,produced single-layer graphene over a whole Ni film substrate,synthesized well-dispersed reduced graphene oxide that was uniformly grafted with unique gold nanodots,and fabricated graphene nanoscrolls.We have also explored applications of graphene in organic solar cells and direct,ultrafast DNA sequencing.Finally,we address the challenges that graphene still face in its synthesis and clean energy and biological sensing applications.  相似文献   

10.
Bimetallic nanomaterials consisting of magnetic metals and noble metals have attracted much interest for their promising potentials in fields such as magnetic sensors, catalysts, optical detection and biomedical applications. Bimetallic nanomaterials synthesized by wet-chemical methods with different architectures including nanoparticles, nanowires or nanotubes and their assemblies are summarized in this review. The particular properties of bimetallic nanomaterials, especially their magnetic, catalytic and optical properties, are presented. The advance in electron microscopy makes it possible to understand the nanostructural materials at much higher level than before, which helps to disclose the relationship between the microstructures and properties qualitatively and quantitatively.  相似文献   

11.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫。在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注。对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料。最后分析了石墨烯基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   

12.
碳纤维增强水泥复合材料是一种集结构和功能于一体的新型材料,与普通水泥比较,它高强、导电,对温度和应力敏感,具有电磁屏蔽等特征,介绍了碳纤维增强水泥复合材料的制备方法、性能、应用及其最新研究进展,着重展望了其在功能材料方面的研究应用前景。  相似文献   

13.
As a type of thin film, two dimensional (2D) reticulate architectures built of freestanding single-walled carbon nanotube (SWCNT) bundles are suitable for scalable integration into devices and nanocomposites for many applications. The superior properties of these films, such as optical transparency, unique electrical properties and mechanical flexibility, result not only from the outstanding properties of individual SWCNTs but also from the collective behavior of the individual tubes, with additional properties arising from the tube-tube interactions. In this review, the synthesis, structure and fundamental properties, such as conductivity, transparency, optical nonlinearity and mechanical performance, of ??freestanding SWCNT bundle network?? thin films and nanocomposites, as well as their application as supercapacitors are highlighted. Some long-standing problems and topics warranting further investigation in the near future are addressed.  相似文献   

14.
有机气凝胶及其碳化产物是一种新型,轻质,纳米多孔型非晶凝聚态材料,其成功制备与应用是气凝胶科学发展中的重大进展,由于其许多独特的性能,因而有着极其广泛的应用前景,综述了各种有机气凝胶的制备方法,结构表征,性能及用途,展望了其在不同领域的应用前景。  相似文献   

15.
Recently,graphene has attracted numerous interests from both fundamental and applied fields due to its excellent mechanical,thermal,electrical conductivity and other novel properties.This review gives an overview of recent progress on hybridization modifications of graphene with carbon nanomaterials.Some example applications of graphene-based nanohybrids in polymer composites,optical and conducting materials,high performance electrolyte materials and as well as other functional materials are summarized and discussed.  相似文献   

16.
Many efficient adsorbents and sensors based on graphene and functionalized graphene have been constructed for the removal and detection of environmental pollutants due to its unique physicochemical properties. In this article, recent research achievements are reviewed on the application of graphene-based materials in the environmental protection and detection. For environmental protection, modified graphene can adsorb heavy metal ions in a high efficiency and selectivity, and thus reduces them to metals for recycling. High adsorption capacity of graphene-based materials to kinds of organic pollutants in water was also presented. Several graphene-based sensors with high limit of detection were reported to detect heavy metal ions, toxic gases and organic pollutants in environment. Finally, a perspective on the future challenge of adsorbents and detection devices based on graphene is given.  相似文献   

17.
 近红外波段的电光调制器是未来光信号处理和计算系统中的关键功能元器件,硅基石墨烯电光调制器在结构尺寸、调制速率、调制带宽及大规模片上集成等方面具有诸多潜在优点而引起人们的广泛关注和重视。本文介绍了石墨烯的光电特性及光调制机理,结合石墨烯在近红外波段电光调制器中的研究及应用,综述了国内外近红外波段硅基石墨烯电光调制器的研究进展,重点叙述了条形波导结构、谐振结构、纳米梁结构的电光调制器的工作原理及各器件的特性,展望了硅基石墨烯电光调制器的研究方向。  相似文献   

18.
As promising candidates of power resources, electrochemical energy storage (EES) devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D) materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field.  相似文献   

19.
根据聚苯类及其衍生物具有独特的电、光、磁等性能,以及其优越的柔韧性和材料的可加工性,论述了聚对苯及其衍生物的制备方法、特点和应用,并提出了目前存在的问题及研究发展的方向.研究结果表明:聚对苯及其衍生物是一种极有应用前景的功能高分子材料,然而由于结构和制备的复杂性和多样性,还存在许多问题,如物性接近的异构体众多,相互分离十分困难,目标产物的选择性差,收率低,反应条件苛刻等.  相似文献   

20.
有机气凝胶是一类由高聚物分子构成的多孔非晶凝聚态材料,具有独特的纳米多孔和连续的三维网络结构及极低的密度,高的比表面积和高孔隙率等特点.综述了目前各种有机气凝胶的制备方法,骨架结构、多孔结构和形态等的表征方法以及其结构可裁剪等特性,展望了其在理论研究、催化剂及载体、高效隔热材料、激光约束驱动靶以及作为碳气碳胶前驱体等方面的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号