首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用静电纺丝技术制备ZnCl2/聚丙烯腈(PAN)基复合纳米纤维,经预氧化、碳化和HCl处理制得电容器脱盐用多孔碳纳米纤维(简称PCNF)电极.通过扫描电镜、比表面积、红外光谱及接触角技术研究PCNF的形貌、结构性能.结果表明,ZnCl2对纳米纤维丝具有造孔作用,提高了纤维的比表面积,同时改善了纤维的表面亲水性.循环伏安测试证明该PCNF电极具有较高的双电层电容,将其组装电容器,成功用于盐水淡化,单个循环的脱盐量为8.2mg/g,比纯PAN基碳纳米纤维电极提高了5倍.以PCNF作为电极的电容器脱盐循环稳定性好,有望用于苦咸水及海水的淡化处理.  相似文献   

2.
由于碳纳米纤维比表面积(SSA)较低,在电容去离子(CDI)应用中,其脱盐效率并不理想。该研究采用静电纺丝技术制备了沸石咪唑酯骨架-8(ZIF-8)材料与聚丙烯腈(PAN)复合纳米纤维,并通过碳化工艺处理得到多孔碳纳米纤维电极材料。经过优化组分及碳化工艺后,所得碳纤维电极的SSA和孔体积分别高达398.74 m2/g和0.180 cm3/g。在1.2 V和1.6 V电压下,该电极对500 mg/L的NaCl溶液(50 mL)的盐吸附容量分别达21.16 mg/g和39.04 mg/g。此外,电化学测试结果显示,提高碳纳米纤维电极的孔隙率可以在一定程度上提高双电层电容,从而实现更高的离子吸附量和更稳定的储能性能。  相似文献   

3.
采用静电纺丝法制备了PVP/Zn(Ac)2复合纳米纤维,利用扫描电子显微镜对其表面形貌进行了表征.研究了PVP含量、纺丝电压、乙酸锌含量等因素对纺丝过程和纤维形貌的影响,同时分析了不同参数引起纤维形貌变化的原因.结果表明,当2mL乙醇中PVP的含量为0.248g,2.5mL DMF中乙酸锌的含量为0.501g,纺丝电压为17kV时,可以得到平均直径为180nm、表面光滑而且连续性很好的PVP/Zn(Ac)2复合纳米纤维,实现了ZnO前驱体纳米纤维的可控制备.  相似文献   

4.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

5.
以无定形TiO_2粉体为前驱体,利用水热反应制得TiO_2纳米片,后与氧化石墨复合并还原得到TiO_2纳米片/石墨烯(rGO)复合电极材料。利用X射线衍射(XRD)、氮气吸脱附、扫描电镜(SEM)和透射电镜(TEM)对其形貌和结构进行表征。结果表明,TiO_2纳米片是由粒子聚集而成,在复合材料中,TiO_2纳米片进入到了石墨烯片层之间,增加了复合材料的比表面积。循环伏安(CV)、恒电流放电(CP)和循环寿命测试表明,TiO_2/rGO纳米复合电极材料在三电极体系中,电流密度为1A·g~(-1)时,比电容高达240.9 F·g~(-1)。2 000次循环后仍保持初始电容68%,表现出优秀的超级电容器电极材料性能。  相似文献   

6.
以碳布(CC)为基体、氧化锌纳米棒为模板,2-甲基咪唑为有机配体,采用水热与高温碳化方法,在碳布表面构建氧化锌纳米棒阵列复合材料(ZnO/C);利用电沉积法在ZnO/C复合物表面生长氢氧化镍(Ni(OH)_2)纳米片,获得碳布负载的氧化锌/碳/氢氧化镍(ZnO/C/Ni(OH)_2)核壳结构纳米棒阵列。对获得的复合材料进行形貌和结构表征,并对其电化学性能进行了测试。结果表明:复合物纳米棒阵列均匀生长在碳布表面,纳米棒外层由纳米片状Ni(OH)_2相互交叉堆叠而成;该复合材料作为超级电容器的电极材料时,在1.0 A/g的电流密度下比容量可以达到1 051.9 F/g;当电流密度增大到10 A/g后,比容量仍有644.5 F/g;在5.0 A/g的电流密度下进行5 000次循环充放电后,复合电极的比容量仍保留87.1%,展现出良好的电化学性能。  相似文献   

7.
金属有机骨架(MOFs)被认为是制备纳米多孔碳材料并用于超级电容器电极的理想前体,因为它们能够从分子尺度调节材料的结构.但是,一方面MOFs衍生的碳通常表现出较低的石墨化水平,另一方面纳米多孔碳颗粒之间具有较大的界面电阻,这些影响因素会导致电极的导电性差,进而极大地限制它们的电化学性能.本研究成功将ZIF-67嵌入聚丙烯腈(PAN)的纳米线纤维中,并在碳化处理后可以独立地用于超级电容器电极.PAN纳米纤维在热解过程中能够产生高石墨化水平的碳纤维,一方面用于连接ZIF衍生的碳纳米颗粒,另一方面有利于电荷转移;ZIF-67可以提供氮掺杂的多孔碳结构用于电荷存储.这种电极在1A·g~(-1)的电流密度下可以达到124F·g~(-1)的质量比容量,并在10A·g~(-1)的10 000次循环中电容保持率大于92%.  相似文献   

8.
采用尿素辅助溶胶凝胶法合成了尖晶石型掺钴锰酸锂(L iMn2-xCoxO4,0≤x≤0.3)纳米颗粒.以L iMn2-xCoxO4电极为正极,活性炭(AC)电极为负极,在1 mol.L-1L i2SO4水系电解液中组装成模拟非对称超级电容器AC/L iMn2-xCoxO4,通过循环伏安和恒流充放电法研究其赝电容性能.电化学测试结果表明,随着钴掺杂量的增加,AC/L iMn2-xCoxO4电容器的比电容呈下降趋势,但循环性能得到改善;其中AC/L iMn1.9Co0.1O4电容器展现出较大的比电容和较好的循环性能.在L i2SO4水系电解液中,当工作电压为(0-1.4)V、电流密度为100 mA.g-1时,AC/L iMn1.9Co0.1O4电容器的初始比电容为42.6 F.g-1;经1 000次循环后比电容为40.8 F.g-1,比电容保持率为95.8%.  相似文献   

9.
以制备的纳米纤维素(NFC)、还原氧化石墨烯(RGO)及聚苯胺(PANI)为原料,按照一定的质量比进行混合超声分散,经真空抽滤得到NFC/RGO(NR)和NFC/RGO/PANI(NRP)复合纸基电极材料.探讨了NFC的羧基含量与复合纸基电极的电学性能和机械性能的关系,以获得性能更优的复合纸基电极.最后以聚乙烯醇/硫酸(PVA/H_2SO_4)为电解质,制备了NFC/RGO和NFC/RGO/PANI复合纸基超级电容器(NRS和NRPS).结果表明:通过改变NFC、RGO及PANI的质量比,NFC可以有效阻止RGO和PANI的团聚,同时其亲水特性可以有效提高电解质离子的扩散速率;NFC羧基含量增加可以提高复合材料间的结合,从而提升复合纸基电极材料的电学性能和机械性能;当NFC、RGO和PANI的质量比为5∶3∶3时,在0.5A/g电流密度下,NRPS纸基超级电容器的比电容为305F/g,经过1000次循环后其比电容仍可保留起始的98.3%,表现出良好的电化学循环稳定性.  相似文献   

10.
将碳纸与氧化还原反应法制备的纳米MnO_2通过液相沉积法形成新的复合电极材料,采用循环伏安和交流阻抗测试技术对复合电极材料进行电化学分析,研究结果表明:碳纸/纳米MnO_2复合电极材料呈花瓣状开放结构,有利于提高复合电极的比表面积;碳纸基体沉积时间为1 h时,复合电极的电化学性能最稳定;但随着扫描速率的增加,复合电极的比电容呈下降趋势,且沉积时间越长,复合电极电容性的稳定也越差。  相似文献   

11.
将活性炭与二氧化钛TiO_2纳米纤维混合组成复合电极材料,研究复合方式和比例对复合电极材料及其电容性能的影响.结果表明,随着活性炭比例的增加,TiO_2/C电容器的等效串联电阻迅速降低,比容量和能量密度相应提高.当活性炭与二氧化钛TiO_2比例为2∶1时性能最优,比容量为24.2 F/g,能量密度为3.32 Wh/kg.  相似文献   

12.
以甲烷作为碳源气体,块体锰作为原料,采用一种简单的直流电弧等离子体法成功制备了Mn_7C_3@C核壳型纳米粒子,用于高性能超级电容器的电极材料.所制备的Mn_7C_3@C核壳型纳米粒子平均直径为30~35nm.拉曼光谱结果显示石墨碳壳具有良好的导电性.通过循环伏安、恒电流充放电及电化学交流阻抗谱对Mn_7C_3@C核壳型纳米粒子电极材料进行电化学性能分析,结果表明其具有高比电容、快速充放电等优异的电化学性能.在扫描速率为1mV/s时,比电容最高可达185.8F/g.同时具有良好的循环稳定性,在100mV/s扫描速率下1 000次循环伏安测试后,比电容仍保持为最初的88%,与单纯Mn_7C_3(79%)相比,有明显提高.Mn_7C_3@C核壳型纳米粒子电极材料优异的电化学性能归因于其良好的核壳结构,富缺陷碳层具有良好的导电性,有助于离子的传输和结构的稳定,而内核Mn_7C_3主要产生赝电容,在C和Mn_7C_3的协同作用下产生双电层和赝电容双模式储能机制.  相似文献   

13.
采用一种简单的电化学沉积和退火方法,实现了在碳布基底上碳氮结构修饰氮化钴(CC@Co2 N@CN)材料的制备,并将其用于高性能超级电容器.氮化钴表面修饰的碳氮结构不仅可以提高整个电极的电容,而且可以缓解氮化钴的氧化,从而提高整体的导电性能.同时,CC@Co2 N@CN表现出极长的寿命,在10000次循环后容量仍能保持其初始值的77%.在电流密度为1 m A·cm-2时,该电极的面积电容最高可达429.4 m F·cm-2.因为具有较大的面积电容和良好的循环稳定性能,此类基于碳布基底的氮化钴碳氮结构超级电容器在储能领域具有广阔的应用前景.  相似文献   

14.
超级电容器作为一种新型的电化学储能元件,以充放电效率高、循环寿命长等优点引起研究者的大量关注,而电极材料是决定超级电容器性能的一个关键性因素。常见的电极材料主要有:碳材料、金属化合物材料和导电聚合物材料三大类。当它们单独作为超级电容器电极材料时,碳材料展现高功率密度和优异的循环稳定性,但其比电容较低;而金属化合物和导电聚合物材料具有高比电容,但由于它们导电性差,致使其循环稳定性和倍率性能较差。因此,超级电容器电极材料的研究关注点是碳材料与其他材料组成复合材料,以制备出兼具高比电容、良好循环稳定性和倍率性能的超级电容器电极材料。  相似文献   

15.
以氨水作为催化剂,间苯二酚和甲醛为前驱体制备单分散酚醛(resorcinolformaldehyde,RF)树脂微球和碳微球.采用循环伏安法、电化学交流阻抗和恒电流充放电等方法对由RF树脂得到的碳微球的电化学性能的测试表明,其可以作为超级电容器电极材料.在扫描速率为1mV·s-1时,比电容为175.9F·g-1,电阻为0.5Ω,循环500圈后仍保持94.4%的电容量,具有优异循环寿命.结果表明,由酚醛树脂制备的单分散碳微球作为超级电容器的电极材料具有降低离子运输阻力和提高超级电容器稳定性的功能.  相似文献   

16.
以硝酸镍、尿素、六次甲基四胺为原料,利用水热法与离子溅射镀金相结合在柔性的碳布上合成了氧化镍/金复合纳米片材料;利用扫描电镜(SEM)观测了纳米片的形貌,利用能谱仪(EDS)分析了纳米片的成分;通过循环伏安和恒流充放电测试了各样品的电化学电容性能.检测结果表明:通过与金相复合,提升了氧化镍的电化学电容性能.这一简单有效的合成策略也为提升其他氧化物纳米材料的电容性能提供了参考.  相似文献   

17.
以硝酸镍、尿素、六次甲基四胺为原料,利用水热法与离子溅射镀金相结合在柔性的碳布上合成了氧化镍/金复合纳米片材料;利用扫描电镜(SEM)观测了纳米片的形貌,利用能谱仪(EDS)分析了纳米片的成分;通过循环伏安和恒流充放电测试了各样品的电化学电容性能.检测结果表明:通过与金相复合,提升了氧化镍的电化学电容性能.这一简单有效的合成策略也为提升其他氧化物纳米材料的电容性能提供了参考.  相似文献   

18.
开发新型电极材料,是实现超级电容器高效储能的关键,对解决能源短缺与环境污染具有重要意义。金属有机骨架材料(MOF)是一类多孔、高比表面积材料,被广泛使用于工业催化、吸附分离、化学储能等领域。然而采用单一的MOF材料作为电极材料却存在稳定性差、比电容低等缺点。为改善其稳定性与比电容,常采用MOF材料与其它金属或者碳基材料进行复合作为电极材料。研究表明,将MOF与金属进行复合作为电极材料,有效的提高了电容器的比电容;将MOF与碳基材料进行复合作为电极材料,明显改善了电容器稳定性,增加了电容器使用寿命。  相似文献   

19.
为了研究不同孔径的有序介孔碳(OMC)作为超级电容器电极的性能差异,本文采用水热合成法制备三种不同孔径的介孔二氧化硅分子筛(SBA-15),再以SBA-15为模板,乙炔为碳源,利用化学气相沉积法(CVD)反向制备具有不同孔径的OMC。利用扫描电子显微镜、氮气吸附和电化学测试等,分析OMC作为电极材料时,其纳米孔结构与性能之间的关系。结果表明,将孔径调控在3~4 nm的OMC-120作为超级电容器电极,在充放电电流密度为0.10 A/g和0.50 A/g时,比电容为44.50 F/g和54.30 F/g;经1 000次循环后电容保持率达99%,其双电层电容性能和稳定性优于其他孔径结构的样品,这归因于OMC-120中较窄的有序介孔结构加速了电子和离子的转移交换,缩短离子的传输路径。  相似文献   

20.
以恒电位法制备的聚吡咯纳米纤维修饰电极为研究对象,重点考察了电极电容法脱盐过程中工作电压、原料液浓度及电极极间距离等操作条件对电极脱盐效果的影响规律.实验结果表明:在工作电压为0.8~1.6 V范围内,电极的吸附量随工作电压的增加而增大,但增加幅度逐渐减小;当工作电压为1.4 V和1.6 V时,电极的吸附量基本相等且最大,为228.6 mg/m2;原料液质量分数为0.01%~0.1%范围内时,电极的吸附量随原料液浓度的增加而增大,其在溶液质量分数为0.1%时最大,为548.6 mg/m2;电极的吸附量随着电极极间距离的增加而降低,其在极间距离为28 mm时最大,分别是极间距离为35 mm和48 mm时的1.17倍和1.75倍.循环脱盐实验结果表明聚吡咯纳米纤维修饰电极具有显著的循环吸附和脱附能力,显示出良好的实用化应用前景和潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号