首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon (IFN)-inducible proteins of the 1-8 gene family mediate homotypic adhesion and transduction of antiproliferative signals. Their induction correlates with inhibition of cell growth while they are often repressed in the course of malignant transformation and tumor development. Ras-mediated transformation of mouse mast cells is associated with downregulation of 1-8U expression and interferon-α (IFN-α) treatment reverts the proliferation rate to normal levels together with induction of 1-8U. Conversely, the antiproliferative responses of IFN-α in sensitive human melanoma cells are accompanied by 1-8U induction. Here we provide direct evidence that recombinant expression of 1-8U in human cell lines is sufficient to block cell proliferation. Based on the abundant expression and subcellular localization to the plasma membrane and exosome-like structures, we propose a model capable of explaining the pleiotropic functions of 1-8 family proteins in tumor cells and during normal development. Received 15 January 2003; received after revision 21 March 2003; accepted 25 March 2003 RID="*" ID="*"Corresponding author.  相似文献   

2.
The vault complex   总被引:2,自引:0,他引:2  
Vaults are large ribonucleoprotein particles found in eukaryotic cells. They are composed of multiple copies of a M r 100,000 major vault protein and two minor vault proteins of M r 193,000 and 240,000, as well as small untranslated RNAs of 86–141 bases. The vault components are arranged into a highly characteristic hollow barrel-like structure of 35 × 65 nm in size. Vaults are predominantly localized in the cytoplasm where they may associate with cytoskeletal elements. A small fraction of vaults are found to be associated with the nucleus. As of yet, the precise cellular function of the vault complex is unknown. However, their distinct morphology and intracellular distribution suggest a role in intracellular transport processes. Here we review the current knowledge on the vault complex, its structure, components and possible functions.Received 23 January 2003; received after revision 13 March 2003; accepted 26 March 2003  相似文献   

3.
In most organisms, the main form of thiamine is the coenzyme thiamine diphosphate. Thiamine triphosphate (ThTP) is also found in low amounts in most vertebrate tissues and can phosphorylate certain proteins. Here we show that ThTP exists not only in vertebrates but is present in bacteria, fungi, plants and invertebrates. Unexpectedly, we found that in Escherichia coli as well as in Arabidopsis thaliana, ThTP was synthesized only under particular circumstances such as hypoxia (E. coli) or withering (A. thaliana). In mammalian tissues, ThTP concentrations are regulated by a specific thiamine triphosphatase that we have recently characterized. This enzyme was found only in mammals. In other organisms, ThTP can be hydrolyzed by unspecific phosphohydrolases. The occurrence of ThTP from prokaryotes to mammals suggests that it may have a basic role in cell metabolism or cell signaling. A decreased content may contribute to the symptoms observed during thiamine deficiency.Received 7 March 2003; received after revision 11 April 2003; accepted 14 April 2003  相似文献   

4.
Efficient clearance of apoptotic cells is required to control homeostasis in normal and pathological circumstances, and inappropriate clearance of cell corpses may lead to autoimmune diseases and inflammation. The multiplicity of phagocytotic mechanisms points to the relevance of removing apoptotic cells. A variety of surface molecules present in either the apoptotic bodies or phagocytes help in attachment and initiation of engulfment. Nonetheless, uncontrolled phagocytosis of apoptotic cells and other particles may lead to tissue injury; therefore, negative signals are important in balancing phagocytotic activity. This review aims at a systematic examination of positive and negative signals that modulate the uptake of apoptotic bodies and the signaling mechanisms involved in the clearance of apoptotic cells.Received 13 November 2004; received after revision 5 March 2005; accepted 8 March 2005  相似文献   

5.
Phosphoinositides play a central role in the control of major eukaryotic cell signaling mechanisms. Accordingly, the list of phosphoinositide-metabolizing enzymes implicated in human diseases has considerably increased these last years. Here we will focus on myotubularin, the protein mutated in the X-linked myotubular myopathy (XLMTM) and the founding member of a family of 13 related proteins. Recent data demonstrate that myotubularin and several other members of the family are potent lipid phosphatases showing a marked specificity for phosphatidylinositol 3-phosphate [PtdIns(3)P]. This finding has raised considerable interest as PtdIns(3)P is implicated in vesicular trafficking and sorting through its binding to specific protein domains. The structure of myotubularin, the molecular mechanisms of its function and its implication in the etiology of XLMTM will be discussed, as well as the potential function and role of the other members of the family.Received 14 February 2003; received after revision 10 April 2003; accepted 14 April 2003  相似文献   

6.
Protein tyrosine phosphatases (PTPs) have emerged as a new class of signaling molecules that play important roles in the development and function of the central nervous system. They include both tyrosine-specific and dual-specific phosphatases. Based on their cellular localization they are also classified as receptor-like or intracellular PTP. However, the intracellular mechanisms by which these PTPs regulate cellular signaling pathways are not well understood. Evidence gathered to date provides some insight into the physiological function of these PTPs in the nervous system. In this review, we outline what is currently known about the functional role of PTPs expressed in the brain.Received 31 March 2003; received after revision 7 May 2003; accepted 22 May 2003  相似文献   

7.
The steroid hormone estrogen and signaling from its receptors are increasingly recognized as critical mediators of a variety of organ-specific biological processes. Recent advances in the identification and functional characterization of novel estrogen receptor interacting proteins clearly show the complexity of hormonal signaling regulation, but may also contribute to our understanding of the roles of estrogen signaling in normal physiology and the pathobiology of human disease.Received 12 June 2003; received after revision 21 July 2003; accepted 29 July 2003  相似文献   

8.
Fine-tuning of cell signaling by glypicans   总被引:1,自引:1,他引:0  
Signaling peptides of the extracellular environment regulate cell biological processes underlying embryonic development, tissue homeostasis, and pathophysiology. The heparan sulphate proteoglycans, glypicans, have evolved as essential modulators of key regulatory proteins such as Wnt, Bmp, Fgf, and Shh. By acting on signal spreading and receptor activation, glypicans can control signal read-out and fate in targeted cells. Genetic and embryological studies have highlighted that glypicans act in a temporal and spatially regulated manner to modulate distinct cellular events. However, alterations of glypican function underlie human congenital malformations and cancer. Recent reports are starting to reveal their mechanism of action and how they can ensure tight modulation of cell signaling.  相似文献   

9.
Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.Received 27 January 2004; received after revision 23 February 2004; accepted 10 March 2004  相似文献   

10.
Mast cell tryptase,a still enigmatic enzyme   总被引:2,自引:0,他引:2  
Tryptases constitute a subfamily of trypsin-like proteinases, stored in the mast cell secretory granules of all mammalian organisms. These enzymes are released along with other mediators into the extracellular medium upon mast cell activation/degranulation. Among the trypsin-like enzymes, tryptases are unique: they are present as active enzymes in the mast cell granules, but display activity only extracellularly, and have a specificity which is much more restricted than trypsin. Tryptases are mostly tetrameric, and in only few organisms (not in humans) are they inhibited by endogenous inhibitors in vitro. The enzymatic and molecular properties of tryptases are far better characterized that any of their plausible biological functions. On the basis of its structural and functional features it could be predicted that tryptase would not degrade a large number of proteins in vivo due to low accessibility to the tetramer central pore where the active sites face inwards. Although their biological function has not yet been clarified, tryptases seem to be involved in a number of mast cell-mediated allergic and inflammatory diseases. In particular, the involvement of tryptase in asthma, an inflammatory disease of the airways often caused by allergy, has been proposed. Here we review the present knowledge on the structure-function relationship of tryptases from different organisms, with special emphasis on human enzymes, and on their role in a variety of pathophsyiological processes.Received 29 October 2003; received after revision 3 December 2003; accepted 11 December 2003  相似文献   

11.
12.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   

13.
Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has been used as a model organism to study the functions of peroxisomes. Efficient oxidation of fatty acids does not only require the participation of peroxisomal enzymes but also the active involvement of other gene products. One group of important gene products in this respect includes peroxisomal membrane proteins involved in metabolite transport. This overview discusses the various aspects of fatty acid -oxidation in S. cerevisiae. Addressed are the various enzymes and their particular functions as well as the various transport mechanisms to take up fatty acids into peroxisomes or to export the -oxidation products out of the peroxisome to mitochondria for full oxidation to CO2 and H2O.Received 19 February 2003; received after revision 27 March 2003; accepted 27 March 2003  相似文献   

14.
The nuclear factor-κB (NF-κB) signaling pathway plays a key role in inflammation, immune response, cell growth control and protection against apoptosis. Recently, it has been associated with several distinct genetic diseases that exhibit a large spectrum of dysfunction, such as skin inflammation, perturbed skin appendage development and immunodeficiencies. In this review, a summary of the pathophysiological consequences of impaired NF-κB activation in humans is provided with respect to the functions of the molecules which are mutated.Received 26 January 2005; received after revision 7 March 2005; accepted 31 March 2005  相似文献   

15.
16.
17.
Acetyl-coenzyme A synthetase (AMP forming)   总被引:1,自引:0,他引:1  
Acetyl-coenzyme A synthetase (AMP forming; Acs) is an enzyme whose activity is central to the metabolism of prokaryotic and eukaryotic cells. The physiological role of this enzyme is to activate acetate to acetyl-coenzyme A (Ac-CoA). The importance of Acs has been recognized for decades, since it provides the cell the two-carbon metabolite used in many anabolic and energy generation processes. In the last decade researchers have learned how carefully the cell monitors the synthesis and activity of this enzyme. In eukaryotes and prokaryotes, complex regulatory systems control acs gene expression as a function carbon flux, with a second layer of regulation exerted posttranslationally by the NAD+/sirtuin-dependent protein acetylation/deacetylation system. Recent structural work provides snapshots of the dramatic conformational changes Acs undergoes during catalysis. Future work on the regulation of acs gene expression will expand our understanding of metabolic integration, while structure/function studies will reveal more details of the function of this splendid molecular machine.Received 4 December 2003; received after revision 2 March 2004; accepted 16 March 2004  相似文献   

18.
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.  相似文献   

19.
Accumulation of abnormal proteins and endoplasmic reticulum stress accompany neurodegenerative diseases including Huntington’s disease. We show that the expression of mutant huntingtin proteins with extended polyglutamine repeats differentially affected endoplasmic reticulum signaling cascades linked to the inositol-requiring enzyme-1 (IRE1) pathway. Thus, the p38 and c-Jun N-terminal kinase pathways were activated, while the levels of the nuclear factor-κB-p65 (NF-κB-p65) protein decreased. Downregulation of NF-κB signaling was linked to decreased antioxidant levels, increased oxidative stress, and enhanced cell death. Concomitantly, calpain was activated, and treatment with calpain inhibitors restored NF-κB-p65 levels and increased cell viability. The calpain regulator, calpastatin, was low in cells expressing mutant huntingtin, and overexpression of calpastatin counteracted the deleterious effects caused by N-terminal mutant huntingtin proteins. These results show that calpastatin and an altered NF-κB-p65 signaling are crucial factors involved in oxidative stress and cell death mediated by mutant huntingtin proteins.  相似文献   

20.
Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell’s own personal ‘Santa Claus’ that serves to ‘gift’ various signaling complexes with precise proteins that they ‘wish for’, and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号