首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
伽玛暴是宇宙中最剧烈的恒星级高能爆发现象,一般被认为产生于大质量恒星死亡(一些爆发时标长于2 s的伽玛暴在观测上被证实与一类特殊的超新星成协)或者双致密星(比如双中子星系统)并合(这类并合时标很短,可产生时标短于2 s的伽玛暴).工作在8 ke V–300 Ge V能段的Fermi伽玛射线空间望远镜自2008年升空工作之后,伽玛暴瞬时辐射和高能辐射研究取得了重要进展.本综述将介绍Fermi卫星在过去几年内关于伽玛暴领域的一些重要观测结果,并着重介绍这些观测对探索伽玛暴物理(伽玛暴外流体的光球辐射、磁化、Ge V高能辐射起源),特别是Fermi卫星大面积望远镜(LAT)的高能(100 Me V)辐射观测对限制伽玛暴初始速度/洛伦兹因子,限制宇宙河外背景光模型以及检验光速不变原理等方面的主要研究进展.  相似文献   

2.
 宇宙线的研究具有悠久的历史,取得了许多划时代的发现性成果。但是人类对宇宙线的起源、加速和传播等问题仍存在诸多疑惑。大型高海拔空气簇射观测站(LHAASO)独具高海拔和大规模优势,计划利用多种探测手段开展联合观测,大幅提升对伽马和宇宙线粒子的鉴别能力。LHAASO有望获得史上最高的伽玛探测灵敏度,并在很宽的能量范围内精确测量宇宙线能谱,为宇宙线物理、高能天体物理、宇宙学和新物理学规律研究做出贡献。介绍了LHAASO的探测器结构、性能优势和科学目标。  相似文献   

3.
宇宙线的能谱延展到超过1015电子伏特(PeV)的能段,这表明银河系中存在超高能的宇宙线加速源.而近期的甚高能伽马射线观测表明,长期以来被认为是主要宇宙线加速源的超新星遗迹很难把宇宙线加速到超高能.因此,寻找超高能(PeV)宇宙线加速源是宇宙线起源研究中的核心问题.其中一个最直接的方法就是寻找加速源附近宇宙线与星际气体相互作用产生的超高能伽马射线辐射.我国的高海拔宇宙线观测站(LHAASO),由于其在超高能伽马射线能段世界领先的灵敏度,成为这一研究的理想工具.LHAASO半阵列建成后一年之内,已经在银盘上观测到了十二个超高能伽马射线源,在这一领域取得了突破性的进展.本文将介绍这些已得到的观测结果,并对LHAASO全阵列建成后可能的新进展进行展望.  相似文献   

4.
高能伽玛射线辐射位居宇宙电磁辐射频带的高端,联系宇宙天体巨大能量释放和相对论性粒子加速及其非热辐射过程,是探索极端条件下物理过程的重要天文窗口,也是研究"世纪之谜"——宇宙线起源问题的重要手段.随着新一代探测器的稳定运行,天基和地基伽玛射线探测均取得了丰硕成果.在100 Me V能段,2008年上天的Fermi卫星已将伽玛射线源由三百增加到三千多个.在100 Ge V能段,地面切伦科夫望远镜HESS,MAGIC,VERITAS和地面EAS阵列Tibet ASγ,Milagro,ARGO-YBJ,自2003年以来已将伽玛射线源由十多个提升到一百六十个,同时,下一代探测器CTA和LHAASO也在稳步推进中,未来将把地基探测能力提升一个量级以上.本文主要介绍各家实验概况及其取得的重要观测进展,然后分类概括各种类伽玛射线源(脉冲星及其风云、超新星遗迹、伽玛射线双星、活动星系核、伽玛射线暴及其他伽玛射线源)的观测研究现状,并对未来CTA和LHAASO实验进行展望.  相似文献   

5.
TeV耀变体     
地面切仑科夫望远镜阵列(IACTs)与空间费米大面积望远镜(Fermi-LAT)的协同观测,推动了耀变体高能辐射的研究,特别在耀变体的宽线区结构(BLR)、喷流的物质组成、粒子加速、辐射过程、以及高能宇宙射线起源等方面取得新进展.同时,耀变体产生的TeV伽马射线和极高能粒子在传播过程中会与河外背景光(EBL)、微波背景(CMB)及星际磁场(IGMF)发生作用,可以用TeV耀变体研究河外背景光及星际磁场的强度,以及它对宇宙学的影响.本文中,我们简要介绍了TeV耀变体的观测设备、统计性质和相关的研究进展等内容.  相似文献   

6.
1 引言宇宙线天体物理研究来自宇宙深处的高能粒子,初级宇宙线核成分观测是其中的一个重要课题.初级核成分的观测之所以重要,是因为宇宙线源通过核反应产生大量重核,而在向外传播过程中要与星际物质碰撞产生各种轻核(Li,Be,B 等),测定地球附近的宇宙线核成分,可以帮助人们弄清宇宙线在银河系中的传播机制,弄清宇宙线源内部的核成分和产生机制.芝加哥大学在这一研究领域目前处于领先地位,HEIDI(High Energy Isotope  相似文献   

7.
对宇宙线起源问题的探讨,正随着新一代地基和空间伽玛射线望远镜观测的开展而深化.作为普遍认为的能量在"膝"部以下宇宙线粒子主要加速场所的超新星遗迹,在Ge V–Te V能段探测到的样本在不断扩大,一些具有指示性意义的在流量、能谱方面的统计特征也得到显现.为证实作为宇宙线主体的相对论性质子能够由超新星遗迹的激波加速产生,对超新星遗迹的伽玛射线辐射的观测和理论研究,特别对于与分子云作用的超新星遗迹的强子作用伽玛射线辐射的研究,已取得较大的进展,其中W44,IC 443等遗迹在70 Me V附近?0介子衰变的特征性鼓包特别引人瞩目.对强子作用的辐射机制目前已可分为质子就地直接打击和逃逸扩散"照亮"分子云两大类.但对大样本超新星遗迹的伽玛射线辐射更系统的研究,包括对超新星遗迹的伽玛射线及多波段辐射谱进行合理模型计算、澄清这些遗迹所在星际环境中分子气体的分布情况,甚至基本地判明一些遗迹伽玛射线辐射轻强子作用属性等,都还有大量工作要做.本文将概述近年在以上相关各方面研究的进展情况.  相似文献   

8.
100多年来,银河宇宙线的起源,传播,空间分布一直是宇宙线的研究重点之一,至今虽有巨大进展但仍远没有完全明白.近年来,射电,光学,X-ray和γ-ray的联合观测对我们了解银河宇宙线起到了重要的推动作用.它们已经给出的众多证据表明银河宇宙线很有可能主要起源于超新星遗迹的扩散激波加速.对高灵敏度Fermi银河弥散γ-ray数据的分析,使得我们对宇宙线在银河系内分布和组成的认识进一步加深.米波射电观测将有可能在银河宇宙线的空间分布和传播(通过电离氢区和行星状星云的吸收观测,高灵敏度高分辨率米波射电巡天),宇宙线的起源(超新星遗迹激波区域的观测,河外点源和脉冲星的闪烁,散射观测,Te Vγ-ray源在低能端的对应体的搜寻)方面起到重要的作用.  相似文献   

9.
高能宇宙线在宇宙加速器中的产生和在宇宙空间的传播通常会伴随高能中微子的产生.高能中微子天文学是了解高能天体物理现象的独特的窗口.最近,位于南极的立方公里级的中微子探测器IceCube探测到了一批高能(Te V)事例,在5.7σ的置信度之上排除了大气背景的起源.这是人类第一次探测到的来自地外的高能中微子事例,开启了人类探索宇宙的一个新的窗口,标志着高能中微子天文学的诞生.本文简要介绍了高能中微子的探测历史,高能中微子探测器(特别是IceCube)的探测原理及现状,IceCube中微子探测结果,中微子起源的理论探讨以及高能中微子天文的未来展望.  相似文献   

10.
2002年2月5~7日在葡萄牙Algarve大学召开了“第四次天体粒子物理新世界国际会议”,这次国际会议的每个分会都对当前各领域状况做了一个综述,会上讨论的内容包括宇宙学参数、中微子物理和天体物理、引力波、宇宙线起源、传播和交互作用、极端状态下的物质、超新星和暗物质等。各领域的专家介绍了疏远超新星和宇宙学背景辐射近期成果,引力波探测新计划,国际空间站极高能宇宙线检测情况,  相似文献   

11.
文章介绍了1992年至2003年期间羊八井宇宙线超高能粒子源与超高能伽玛天文现象的观测及其研究成果。经过十多年艰苦的观测研究,取得了阶段性重要研究成果。2003年8月,西藏自治区科技厅组织有关专家组对该项目进行了阶段性结题验收,并且对研究成果给予充分肯定。  相似文献   

12.
宇宙中微子正开启一个电磁波观测宇宙之外的全新窗口.然而,传统的中微子探测手段由于造价过高,导致探测器有效面积不足或观测时间有限等问题,不便于进行高能中微子(一般认为能量大于1015 eV为超高能,能量大于1018 eV为极高能)的观测.射电阵列,采用造价低、全天候观测的射电天线,可以建造大面积的观测阵列,达到极高能中微子天文学和极高能宇宙线探测所需的高灵敏度.在科技部国家重点基础研究发展计划项目"宇宙第一缕曙光探测"的资助下,原型阵列TREND(天山射电探测中微子探测器)在2011–2012年的运行过程中取得了重要的成果,仅依靠单极化接收天线阵列,首次证明了不依赖于传统粒子探测器的自触发射电探测方式可以对高能粒子大气簇射进行有效探测.我们计划建造一个巨型天线阵列GRAND,这将是世界上1017 eV以上最灵敏的高能中微子望远镜,可以对高能中微子进行有效的观测.  相似文献   

13.
大科学装置已经成为全球创新系统中具有支撑作用的框架结构,对中国作为一个国家和宇宙线物理作为一个研究领域来说也是一样的.在其一百年发展史中,传统的宇宙线研究并非完全以大科学装置为依托.20世纪80年代以后,为了探索宇宙中微子和极高能宇宙线粒子,那必不可少的巨大中微子灵敏体积和至少上千平方公里的极高能宇宙线探测面积才给这个古老的学科设定了新的标准,而随之提出的几个大科学装置相继建成并在近几十年的宇宙线研究的辉煌成就中占据了核心地位,尤其在甚高能伽马射线天文学.在过去的20年内,中国为发展巡天普查伽马射线源的广延空气簇射技术做出了巨大的努力,成功地运行了ASγ和ARGO-YBJ两个高海拔国际宇宙线实验.现在,我们提出独具特色的高海拔空气簇射测量装置LHAASO的建设计划,建设面积达一平方公里的复合探测器阵列,以多种探测手段的有机组合寻求发现高能宇宙线起源,挑战新世纪里未解之科学难题.凭借其30 TeV以上最高的探测灵敏度,LHAASO将成为整个宇宙线研究领域的支柱项目之一.  相似文献   

14.
伽玛暴是宇宙中最为明亮的爆发现象,由于它们的高光度,人们可探测到发生在极早期宇宙处的伽玛暴.高红移伽玛暴可作为宇宙深处的灯塔,它们是探索早期宇宙性质的理想工具.利用高红移伽玛暴可以限制暗能量和宇宙学参数,测量高红移的恒星形成率,揭示第一代天体的性质,研究宇宙再电离和金属增丰历史.因此,高红移伽玛暴的观测具有重要的科学意义.相比目前的探测卫星,爱因斯坦探针(EP)拥有更高的灵敏度和更宽的观测视场,且主要观测能段为软X射线波段(0.5–4 keV),非常适合高红移伽玛暴的观测.考虑EP的能力和观测模式,并且借助能够很好解释目前Swift卫星的伽玛暴观测样本的理论模型,详细计算了未来EP对高红移伽玛暴的可能探测率.我们预测EP对z6伽玛暴的探测率约为20 events yr~(-1) sr~(-1),对z8伽玛暴的探测率约为6 events yr~(-1) sr~(-1),对z12伽玛暴的探测率约为1 events yr~(-1) sr~(-1).估计在3年的运行时间内,EP将能探测到约65个z6的伽玛暴,其中包括~20个z8的伽玛暴和~3个z12的伽玛暴.总之,EP有望显著提高高红移伽玛暴的观测能力,这些丰富的观测信息将很有可能揭开早期宇宙的部分科学谜团.  相似文献   

15.
宇宙中高能粒子的起源问题是高能太阳和天体物理的核心问题之一.在剧烈变化的天体物理环境下,背景等离子体中的带电粒子可以被其中的电场加速到很高的能量.根据背景电场和带电粒子相互作用的特征,带电粒子的加速机制可以分为:等离子波和粒子共振相互作用、沿磁力线方向的平行电场加速和磁场不均匀性有关的磁场曲率与梯度加速等.根据粒子加速过程对应的宏观能量释放机制,人们发展了随机粒子加速理论、扩散激波粒子加速理论以及磁重联粒子加速理论等.这些理论都有其各自的假设和特征,在不同的天体物理环境有其相应的应用.与高能天体物理观测的不断进步相结合,通过对高能粒子辐射特征和加速过程的分析,人们可以更好地认识剧烈变化天体物理环境下发生的各种物理过程.  相似文献   

16.
活动星系核是当代天体物理研究中最活跃的领域之一.它们对人们探讨星系的形成和演化、宇宙常数的确定、大尺度结构,甚至宇宙各种背景辐射的起源等方面具有非常重要的意义.耀变体是活动星系核的特殊子类,具有极端的观测性质,包括高光度、高而变化的偏振、大幅度激烈光变、视超光速运动和高能伽玛射线辐射.文章将主要介绍光变和喷流效应的研究进展.密集采样捕捉到很短时标,如OJ 287,3C 273,0716+714在光学波段都获得历史最短的光变时标,200 s的快速光变短时标光变发现在PKS 2155-304的Te V波段,而光变周期的分析,多方法加去除伪周期使得结果更加可靠.光变时标在伽玛波段的Doppler因子估算方面取得进展.  相似文献   

17.
以费米伽玛射线空间望远镜运行来最初3个月观测的Blazar为样本,给出了74个(46个平谱射电类星体,28个BL Lac天体)伽玛射线噪Blazar天体的射电(5 GHz)和伽玛射线流量,计算了射电到伽玛射线辐射的有效谱指数αRγ.研究了有效谱指数及射电光度与伽玛射线光度的关系.结果表明:对于射电和伽玛射线光度都有一个...  相似文献   

18.
伽玛噪Blazar天体的中心黑洞质量   总被引:1,自引:0,他引:1       下载免费PDF全文
费米伽玛射线空间大区域望远镜(Large Area Telescope, LAT), 以前称为 Gamma ray Large Area Space Telescope (GLAST))比Energetic Gamma Ray Experiment Telescope (EGRET)提高了观测精度, 在服役的初始几个月中已经检测到一些具有快速光变伽玛射线源. 用LAT观测结果并结合EGRET观测到的伽玛噪Blazar天体的变化时标和伽玛射线光度来估计天体的中心黑洞质量. 我们发现中心黑洞质量下限范围为(0.3~24)×107M, 并将此结果与其他作者的研究结果进行了比较, 发现结果是一致的. 我们也给出了18个有已知超光速伽玛噪Blazar天体的洛伦兹因子(Γ)和视角(θ).  相似文献   

19.
利用次级伽玛射线辐射模型解释耀变体1ES 0229+200的GeV强伽玛射线辐射.在该模型中,源内初级光子和源外次级光子都对观测到的高能伽玛射线辐射有贡献.假定一个合适的电子能谱和星际磁场(IGMF),获得了耀变体1ES 0229+200的能谱.研究结果表明:GeV强伽玛射线辐射来源于正负电子对(e±)散射宇宙微波背景(CMB)光子产生的次级伽玛射线.  相似文献   

20.
伽马射线暴     
戴子高 《科学观察》2020,15(3):29-32
正伽马射线暴(简称伽马暴)是起源于大质量恒星坍缩(长伽马暴)或者致密双星并合(短伽马暴)等短时标极端剧烈的高能灾变天体,是宇宙大爆炸之后最猛烈的爆发现象,也是宇宙宏观速度最快的天体。伽马暴本身辐射及其余辉辐射来自新生黑洞或者磁星所驱动的极端相对论喷流,并且理论上预期其还伴随强引力波、高能中微子和高能宇宙线辐射。因此,伽马暴是研究黑洞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号