首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈MEl(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈MEl(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k2=0时,对每个a∈R,总有Rk+R(ka-1)=R.  相似文献   

2.
给出Abel环的几个新刻画:1)R为Abel环当且仅当对任意e,g∈E(R),当eg=0时必有ge=0;2)R为Abel环当且仅当对任意e,g∈E(R),有|e∨g|≤3;3)R为Abel环当且仅当对任意e∈E(R),a∈N(R),当ae=0时必有ea=0;4)R为Abel环当且仅当对任意e,g,f∈E(R),当e=gf时必有e=fg.  相似文献   

3.
左极小Abel环   总被引:2,自引:2,他引:0  
证明了如下结果:①设R为左极小Abel环,e^2=e∈R满足ReR=R,则角环eRe也是左极小Abel环;②设I是R的不含幂等元的理想,且R/I是左极小Abel环,则R为左极小Abel环;③ R为左极小Abel环←→投射单左R-模的零化子是极大左理想.  相似文献   

4.
给出了Abel环的几个新刻画:1)设S是环R的非空子集且E(R)■S,则R是Abel环当且仅当对任意a∈R,e∈E(R),ae∈CS(R)蕴涵ea∈CS(R)当且仅当对任意e,g∈E(R),eg∈CS(R)蕴涵ge∈CS(R);2)R为Abel环当且仅当W2(R)是quasi-normal环;3)R为Abel环当且仅当对R的每一个幂等元e,存在唯一的square元u及唯一的幂等元g,使得ue=1+gu.  相似文献   

5.
拟Abel环   总被引:2,自引:0,他引:2  
设R是一个环,M是双R-模.若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件: e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.  相似文献   

6.
设R为环,证明了如下结论:1)R为Abel环当且仅当对任意x,y∈R,当1-xy∈GPE(R)时必有1-yx∈GPE(R);2)若R为正则环,则PE(R)为正则环;3)R为约化环当且仅当对每个e∈E(R),a∈N(R),存在x∈R,使得ae=eaxae;4)R为强正则环当且仅当对任意a,b∈R,存在x∈R,使得ab=baxab.  相似文献   

7.
右弱C2环   总被引:2,自引:2,他引:0  
给出右弱C2环的定义,证明了:1)环R是右弱C2环当且仅当对每个0≠a∈R,存在正整数n使得a^n≠0,且若r(a^n)=r(e),其中e^2=e∈R,则e∈Ra^n;2)R是右弱C2环,则Zr(R)包含于J(R);3)给出右弱C2环上Dedekind有限环的等价刻画;4)R是强正则环当且仅当R是右pp环,右弱C2环,Abel环和右零因子幂环。  相似文献   

8.
给出JTT环的定义,研究JTT环的一些性质,主要证明了如下结果:1)R为JTT环当且仅当对任意a∈N(R),x∈R,有a2 x=axa;2)R为交换约化环当且仅当V3(R)是JTT环;3)R为JTT环且a∈aRa,则存在c∈R,使得a=ca2;4)设R为JTT环,则对任意e∈E(R),a∈R,有(1-e)aeR(1-e)ae=0.  相似文献   

9.
DS环的Morita invariant性   总被引:1,自引:1,他引:0  
证明了关于左DS环的几个结果:1)若对R的中心幂等元e,有eRe和(1-e)R(1-e)都是左DS环,则R是左DS环;2)R是左DS环当且仅当全矩阵环Mn(R))是左DS环;3)左DS环是Morita invariant;4)R是左DS环当且仅当R是左MC2环且极小内射左R-模的同态像是极小内射左R-模。  相似文献   

10.
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.  相似文献   

11.
证明了如下结果:1)环R是左quas i-duo环当且仅当对任意x J(R),y∈R,Ry R(yx-1)=R;2)环R是左quas i-duo环当且仅当R是左极小A be l环和左M ELT环.  相似文献   

12.
研究JTTC环的一些性质,主要证明了如下结果:1)R是交换约化环当且仅当G3(R)是JTTC环;2)R是CN环当且仅当W4(R)是JTTC环;3)设R是JTTC环,M是R的极大左理想,a∈R,e∈E(R),则1-ae∈M当且仅当1-ea∈M;4)R是JTTC环当且仅当对R的每个Pierce理想P,有R/P是JTTC环.  相似文献   

13.
EIFP环     
给出EIFP环的定义,研究EIFP环的一些性质.主要证明了如下结果:①设R为EIFP环,则对每个e∈E(R),有eR(1-e)■J(R);②设R为quasi-normal环,e∈E(R),则R是EIFP环当且仅当eRe及(1-e)R(1-e)都是EIFP环;③R是Abel环当且仅当R是EIFP环和强左幂等自反环;④R是强正则环当且仅当R是von Neumann正则环和EIFP环;⑤R是约化环当且仅当R是n-正则环和EIFP环;⑥EIFP的exchange环有稳定域1.  相似文献   

14.
给出GCN环的定义,研究GCN环的一些性质.主要证明了如下结果:GCN环是直接有限环;GCN环是左极小Abel环;设R为GCN环,若x∈R是exchange元,则x是clean元;R是约化环当且仅当R是半素的GCN环.  相似文献   

15.
广义CN环     
研究广义CN环的性质,得到如下结果:1)一个环R为广义CN环当且仅当对任意a∈N(R)和M∈L_(max)(R),有Ma#x2286;M当且仅当N(R)#x2286;J(R)及T_2(R)为广义CN环; 2)设I是环R的理想,则R/I为广义CN环当且仅当R/I~2为广义CN环.  相似文献   

16.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

17.
ML-环     
称环R为左ML-环,若环R中任意元a满足a或1-a是左Morphic元.显然,左Morphic环及局部环皆为左ML-环,但反之不然.设{Ri}i∈I是环族.得到的∏i∈IRi是左ML-环当且仅当存在i0∈I使得Ri0是左ML-环且对任意i∈I-{i0},Ri都是左Morphic环.此外,若正整数n≥2且n=∏si=1prii是n的标准因子分解,则Zn∝Zn是左ML-环当且仅当至多一个i使得ri>1当且仅当Zn是VNL-环.同时还构造了一些例子来说明问题.  相似文献   

18.
设R为一个环,S是R的非空子集.证明了如下结果:1)设R为Abel环,a∈CS(R).若a在R中是von Neumann正则元,则a在CS(R)中也是von Neumann正则元;2)设Ε(R)■S,且R为von Neumann正则环,则CS(R)是von Neumann正则环;3)设Ε(R)■S,且R为VNL环,则R不能表示成理想的直和当且仅当CS(R)为局部环.  相似文献   

19.
QMUP-内射环     
引入左QMUP-内射(模)环的概念并研究其相关性质,得到如下结果:1)R为左泛极小内射环当且仅当每个单左R-模是QMUP-内射模;2)设R是左QMUP-内射环,则J(R)Zl(R)且R/Zl(R)是π-正则环;3)左QMUP-内射环是左极小内射环;4)设R为一个环,包含一个内射的极大左理想,则R是左自内射环当且仅当R是左QMUP-内射环.  相似文献   

20.
一个环R叫做J-clean环,如果R中的每一个元素都可以写成a=e+j的形式,其中e是幂等元,j属于Jacobson根,文章探究了J-clean环的各种性质和Morita contexts,证明了环R是J-clean当且仅当R是clean环和R/J(R)是布尔环;环R是J-clean当且仅当R[[x_1,…,x_n]],R(M),R[[x]]和R∝M是J-clean,每个J-clean环R是右(左)quasi-duo环.更多的,当R:=(A M/N B)是一个Morita context,则R是J-clean环当且仅当A,B是J-clean环并且MN■J(A)和NM■J(B);当R是一个环且s∈C(R),则S=K_s(R)是J-clean当且仅当R是J-clean且s∈J(R);当R是一个环且s∈C(R),则M_n(R;s)是J-clean当且仅当R是J-clean和s∈J(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号