首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用溶胶-凝胶技术制备Eu3+、V共掺杂的SiO2材料,通过差热-热重分析、傅立叶红外光谱、X射线衍射、激发光谱与发射光谱等测试手段对粉末的晶型、结构、发光性质进行研究.结果表明:材料属于非晶态,800℃退火后Eu3+、V共掺杂的SiO2样品的结构基本稳定,只存在SiO2的网状结构; 激发光谱显示,Eu-O电荷迁移带随着V掺杂量的增加而消失,产生强度较大的320nm处的7F0→5H3跃迁; 发射光谱显示,随着V的掺入,最佳激发波长由393nm向320nm转移,同时出现了467nm,577nm,588nm,612nm处的发射峰,它们分别归属于Eu3+的5D2→7F0跃迁与VO3-4的蓝色发射的叠加跃迁、Eu3+的5D0→7F0跃迁、5D0→7F1磁偶极跃迁和5D0→7F2的电偶极跃迁,实现了同一物质同时产生蓝色荧光和红色荧光.同时发现,VO3-4对Eu3+的发光有较好的敏化作用,并通过所得的能级图对样品的跃迁机理进行了分析.  相似文献   

2.
CaSiO3∶Eu3+Bi3+的制备及发光性能   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法合成了具有单斜晶系钙钛矿型CaSiO3结构的CaSiO3∶Eu3+Bi3+发光体.其激发光谱的峰位位于238,396,415,437和359 nm, 分别对应于Eu3+-O2-的电荷迁移带、Eu3+的7F0,1-5L6,7F0-5D3,7F1-5D3的跃迁谱线和Bi3+的1S0-3P1吸收峰.在359和395 nm波长的光激发下, Eu3+的5D0-7F2受迫电偶极跃迁峰的强度要比Eu3+的5D0-7F1磁偶极跃迁峰强,表明Eu3+占据更多的是非反演中心格位.探讨了CaSiO3基质中Bi3+对Eu3+的能量传递和敏化作用,结果表明:Bi3+确实对Eu3+起到了敏化作用,它们之间的能量传递方式为共振能量传递.  相似文献   

3.
研究了化学沉淀法制备YAP:Eu3+Cu+荧光粉,得到适宜工艺参数.用XRD和PL谱分别表征前驱体的晶体结构和荧光粉的荧光特性.前驱体的焙烧温度为1 200℃,焙烧时间为2 h;Eu3+的适宜掺杂浓度为3%,而且在398 nm紫外光激发下荧光粉呈现红色光谱,这是由于Eu3+的4fn电子组态内5D0→7FJ(J=0~4)的跃迁发射,由5D0→7F2的发射特性和发射强度表明Eu3+主要处于非反演对称中心.Cu+增强了YAP:Eu3+的发光强度是因为Cu+→Eu3+之间的能量传递,Cu+对Eu3+有敏化作用.  相似文献   

4.
Eu~(3+)和CaWO_4共沉淀发光材料的制备及其发光性质   总被引:1,自引:0,他引:1  
通过共沉淀技术制备了稀土离子Eu3+和CaWO4共沉淀发光材料,并通过测试样品的红外光谱(IR)、激发光谱、发射光谱,研究了稀土离子Eu3+和CaWO4共沉淀发光材料的结构和发光性能.结果显示:反应产物中有CaWO4生成,在实验过程中加入的有机活性剂基本除净; 样品显示出Eu3+的特征发射光峰位于588nm和612nm,分别属于5D0→7F1和5D0→7F2跃迁,对应的主要激发光谱位置分别是363nm(7F0→5D4),383nm(7F0→5G2),395nm(7F0→5L6),414nm(7F0→5D3),465nm(7F0→5D2),536nm(7F0→5D1),560nm(7F2→5D1),585nm(7F0→5D0).说明稀土离子Eu3+在共沉淀材料中具有良好的发光性能,其含量为0.50%时发光性能最好.  相似文献   

5.
采用沉淀法合成YVO4:Eu3+,Bi3+纳米晶.研究掺杂不同Bi3+浓度的YVO4:Eu3+纳米荧光粉在不同温度下的性质.分别采用X射线衍射仪、扫描电子显微镜及荧光光谱仪对荧光粉的结构、形貌和发光性能进行测试.结果表明:合成的荧光粉均为四方相YVO4,形貌呈规则的形状.Bi3+掺杂没有改变荧光粉的形貌.特征发射峰来自于Eu3+的5D0→7FJ跃迁,Bi3+掺杂改变了激发谱峰位,而且使得激发带有一定程度的展宽,同时Bi3+对Eu3+有敏化作用,在适量的浓度范围内纳米荧光粉的发光强度增强.  相似文献   

6.
室温下测量并研究了晶态和非晶态Y1.6 SiO5:Eu0.43+的激发和发射光谱,发现Y16SiO5:Eu0.43+呈现5D0→7F0,5D0→7F1,5D0→7F2跃迁发光光谱.在非晶态时5D0→7F0跃迁发光峰位于579 nm;5D0→7F1跃迁光谱呈现宽峰,峰值位于587nm;5D0→7F2呈现一个强的发射单峰位于612nm.晶态时5D0→7F0发光峰强度及峰位不变,5D0→7F1发射光谱分裂成三重尖峰,5D0→7F2发光峰相对强度减弱,在长波段呈现新的发射峰.  相似文献   

7.
采用柠檬酸凝胶-燃烧法制备了Eu3+和Gd3+双稀土共掺杂超细BaZrO3荧光粉,利用X射线衍射、差热-热重、红外光谱、扫描电镜等方法对荧光粉的结构、组成及形貌进行了表征.结果表明,经800℃退火后得到的样品呈球形分布,为粒径100~300nm的超细立方相结构BaZrO3:Eu3+、Gd3+粉末.通过样品的激发光谱和发射光谱详细研究了Gd3+对BaZrO3:Eu3+体系中Eu3+发光性质的影响,结果表明在BaZrO3:Eu3+、Gd3+体系中Eu3+的发光强度远远强于Eu3+的单一掺杂,说明Gd3+对Eu3+发光的敏化效果十分明显.BaZrO3:Eu3+、Gd3+的最强激发峰位于465nm和395nm处,与广泛使用的蓝光LED芯片的输出波长相匹配.在近紫外和蓝光激发下,样品发射以Eu3+5 D0→7F1磁偶极跃迁为主的橙光和5 D0→7F2电偶极跃迁为主的红光.因此该法制备的超细BaZrO3:Eu3+、Gd3+粉末有望成为一种潜在的适用于蓝光LED芯片的光转换橙红光材料.  相似文献   

8.
利用高温固相法合成了CaSiO3∶Eu3+荧光粉,确定其最佳的合成条件为:烧结温度1200℃;烧结时间3h;助熔剂用量3%;激活剂的配比为2%(摩尔分数).对合成样品进行了荧光光谱分析,结果表明,该荧光粉的光谱中609nm处出现很强的发射峰,归属为Eu3+的5D0→7F2跃迁发射.  相似文献   

9.
采用溶胶-凝胶-燃烧法在700℃和较短的煅烧时间下制备了钙钛矿结构的BaZrO3纳米晶,对产物进行不同摩尔浓度的Eu3+、Dy3+掺杂,并对产物的发光性质进行了研究.结果表明:Eu3+掺杂的BaZrO3样品具有5D0→7F1(595 nm)和5D0-7F2(615 nm)的强电子吸收,且在Eu3+掺杂摩尔浓度为5%附近...  相似文献   

10.
在表面活性剂十二烷基苯磺酸钠(SDBS)辅助的水热条件下制备出ZnO:Eu3+前驱体,利用X-射线衍射、红外光谱、紫外光谱、扫描电镜等方法对样品的结构、形貌及组成进行了分析.结果表明,经800℃焙烧处理,得到平均直径为200nm,长度约800nm的梭形纤锌矿ZnO:Eu3+荧光粉.通过激发光谱和发射光谱研究了Eu3+在ZnO基质中的发光性能,在613nm波长光监测下,荧光粉的激发光谱为一宽带和系列锐峰,其最强激发峰出现在蓝光465nm处.在465nm蓝光的激发下,样品发射以Eu3+离子5 D0→7F2电偶极跃迁为主的强红光,当水热温度为160℃、时间为6h时ZnO:Eu3+的发光强度最大.  相似文献   

11.
研究了碲酸盐玻璃中Eu3+离子掺杂浓度对其发光性质的影响.分别用TU-1901UV-VIS紫外可见光谱仪和F-2500荧光光谱仪测量样品的吸收光谱和发射光谱与激发光谱.结果表明:Eu-O电荷迁移带的强度与Eu3+离子掺杂浓度密切相关;相对于基质吸收,Eu3+离子的本征吸收强度随掺杂离子浓度的提高而增强;在394nm光的激发下,Eu3+离子发光主要位于594nm和615nm左右,相对于5 D0→7F1,5 D0→7F2跃迁发射受Eu3+离子掺杂浓度的影响;样品的声子边带与掺杂浓度有关.  相似文献   

12.
采用高温固相法合成了Ba2B2O5:Dy3+荧光粉材料,并对其发光性质进行了研究.样品发射光谱为典型的双峰谱线,分别位于483和575nm处,对应Dy3+的4F9/2→6 H15/2和4F9/2→6 H13/2特征跃迁.激发光谱为多峰锐谱,主峰位于348和386nm处,和UVLED管芯匹配.讨论了Dy3+物质的量分数对发射光谱的影响,结果随Dy3+物质的量分数的增大,黄蓝发射的相对强度比(IY/IB)基本不变,样品的发光强度呈现先增大后减小的趋势.研究了电荷补偿剂Li+对材料发光强度的影响,随着Li+的物质的量分数增加发光强度先增大后减小.测量并标定了Dy3+不同物质的量分数下样品的色坐标,均呈现白光发射.  相似文献   

13.
目的研究退火温度、薄膜层数等制备工艺对发光特性的影响。方法以钛酸丁酯为前驱体,采用溶胶-凝胶法制备稀土Eu,Tb掺杂的TiO2发光干凝胶和薄膜,用紫外-可见荧光分光光度计进行表征。结果 Eu3+单掺样品,用545nm波长光激发时,在618nm处有较强的Eu3+的5D0→7F2跃迁的红光发射,其跃迁强度随着退火温度的升高先增强后减弱,600℃时达到最大值。另外,薄膜的跃迁强度随着薄膜层数的增加先增强再减弱,提拉速度为8cm/min时,19层膜的荧光强度最佳。结论 Eu,Tb共掺干凝胶,以251nm作为激发波长,发射光谱在370~520nm出现了很宽的谱带,谱带中435nm和469nm两个肩峰,认为该发射峰是Eu2+的4f→5d跃迁发射引起的,退火温度在850℃时蓝光发射最强。  相似文献   

14.
利用时间分辨激光诱导荧光光谱技术, 用262 nm和276 nm紫外激光对原子数分数为x(Er3+)=10.5%和x(Er3+)=8.4%两种情况下Er3+ ∶YAG晶体的4D5/2和2H9/2能级分别共振激发, 记录了每种情况下的荧光发射谱, 对其中所有荧光谱峰对应的能级跃迁做了详细标定. 用Judd-Ofelt理论计算其辐射跃迁几率, 发现实验荧光强度比和理论辐射跃迁几率比基本一致.  相似文献   

15.
采用高温固相法合成了Na5.52Mg1.74(PO4)3∶Re3+(Re=Dy,Tm,Tb或Eu)荧光粉并研究了材料的光谱特性。在近紫外光的激发下,Dy3+掺杂材料存在4F9/2→6 H15/2和4F9/2→6 H13/2跃迁产生的485、578nm 2个发射峰。Tm3+掺杂材料出现了由1 D2→3F4跃迁产生的453nm发射峰。Tb3+掺杂材料存在4个发射峰,峰值为490、547、584、624nm,分别对应Tb3+的5 D4→7F6、5 D4→7F5、5 D4→7F4、5 D4→7F3能级跃迁,其中的547nm发射峰为主发射峰。Eu3+掺杂材料存在2个主发射峰,分别为5 D0→7F1、5 D0→7F2跃迁产生的593、615nm的发射峰。进一步研究了Na5.52Mg1.74(PO4)3∶Eu3+中,Eu3+掺杂浓度对材料发射强度的影响,结果显示,随Eu3+掺杂浓度的增大,材料的发射强度增强,在1%~15%掺杂浓度范围内未出现浓度猝灭效应。  相似文献   

16.
采用微波法合成了新型红色长余辉发光材料CaWO4∶Eu3 ,并表征了其结构以及激发、发射光谱和余辉衰减曲线.X-射线衍射分析证实其为单相的钨酸钙,用254 nm紫外灯激发后,CaWO4∶Eu3 产生红色长余辉发光,余辉发射归属于Eu3 的5D0到7FJ(J=0,1,2,3,4)的跃迁.  相似文献   

17.
利用高温固相法合成NaLa4(SiO2)3F:Eu3+红色荧光粉,用X射线粉末衍射仪、扫描电镜和荧光分光光度计对荧光粉进行结构和性能表征,研究NaF用量、反应时间以及反应温度等条件对NaLa4(SiO4)3F:Eu3+发光性能的影响。结果表明,在395nm激发下荧光粉中的Eu3+离子主要发射5 D0→7F2(616nm)和5 D0→7 F1(590nm)跃迁;检测波长为615nm时,激发光谱由一个宽吸收带和若干吸收峰组成,其中在270nm附近的宽峰吸收带和394nm处的吸收峰最强,前者归属于O2--Eu3+离子间的电荷迁移吸收,后者归属于Eu3+离子的7 F0→5 L6跃迁吸收。NaF用量、反应时间以及反应温度对荧光粉的发光性能有一定的影响。  相似文献   

18.
以Eu2O3(99.99%),CaCl2.6H20(AR),Na2WO4.2H2O(AR)为原料,水热合成Eu3+掺杂的CaWO4系列荧光粉,通过XRD、荧光光谱等表征手段,考察荧光粉的晶体结构和三价铕离子的掺杂量对荧光粉体发光性能的影响.研究表明:由于Eu3+半径与Ca2+半径大小相当,Eu3+掺杂的CaWO4荧光粉并未引起其晶体结构的较大变化;在395 nm激发下,荧光粉Ca1-xWO4∶xEu3+的基质CaWO4由于WO42-内部的电荷跃迁产生主峰位于464 nm附近的宽带峰,掺杂的Eu3+分别在590 nm、616 nm处出现对应于Eu3+的5D0→7F15、D0→7F2跃迁的特征发射峰.随着Eu3+浓度的增加,616 nm红光发射强度增强,当Eu3+掺杂量为0.3%时,Ca1-xWO4∶xEu3+在395 nm激发下可得到接近白光效果的荧光发射,其对应的CIE色坐标为X=0.3602,Y=0.3528.  相似文献   

19.
利用时间分辨激光诱导荧光光谱技术,用262 nm和276 nm紫外激光对原子数分数为x(Er3+)=10.5%和x(Er3+)=8.4%两种情况下Er3+:YAG晶体的4D5/2和2H9/2能级分别共振激发,记录了每种情况下的荧光发射谱,对其中所有荧光谱峰对应的能级跃迁做了详细标定.用Judd-Ofelt理论计算其辐射跃迁几率,发现实验荧光强度比和理论辐射跃迁几率比基本一致.  相似文献   

20.
CaSiO3:Eu^3+Bi^3+的制备及发光性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成了具有单斜晶系钙钛矿型CaSiO3结构的CaSiO3∶Eu3 Bi3 发光体.其激发光谱的峰位位于238,396,415,437和359 nm,分别对应于Eu3 —O2-的电荷迁移带、Eu3 的7F0,1—5L6,7F0—5D3,7F1—5D3的跃迁谱线和Bi3 的1S0—3P1吸收峰.在359和395 nm波长的光激发下,Eu3 的5D0—7F2受迫电偶极跃迁峰的强度要比Eu3 的5D0—7F1磁偶极跃迁峰强,表明Eu3 占据更多的是非反演中心格位.探讨了CaSiO3基质中Bi3 对Eu3 的能量传递和敏化作用,结果表明:Bi3 确实对Eu3 起到了敏化作用,它们之间的能量传递方式为共振能量传递.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号