首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
应用粗糙集理论的属性约简和规则约简方法对数据进行分类,并以可靠的数据对该方法进行了实验.结果表明,该方法复杂度低,且能有效提高分类效果.  相似文献   

2.
提出了一种新型的决策规则约简方法。基于均匀划分和正态分布隶属度函数,对决策表的连续属性进行模糊化,用欧氏距离贴近度来构建相似矩阵,并提出了一种论域的模糊划分算法;依据粗糙集隶属度进行属性约简的基础上,给出了一种决策规则约简算法,从而达到发掘知识并简化知识的目的。  相似文献   

3.
针对不完备信息系统(含有缺省数据或不精确数据),研究它的粗糙分类;并基于相容关系,将分布约简、最大分布约简、分配约简、近似约简引入不完备信息系统;且给出了最大分布约简的一种启发式算法:条件信息量约简算法。经实验检验,该算法是有效的。  相似文献   

4.
认为数据量的巨大和高维、用户交互与先验知识的利用等等是知识发现领域面临的问题和难点。粗糙集理论是一种具有模糊边界的集合理论,它作为研究知识发现的新型工具,能严格地处理不精确数据的分类问题,被广泛应用于不相容决策表中的规则提取过程中。针对粗糙集理论中属性约减和属性值约减这两个重要问题进行了研究,并介绍了数据集中挖分类规则的基本原理,同时利用RS理论中核和核值的概念,提出了一个在数据集中发现没有冗余属性的最小归纳依赖关系并简化决策系统的数据挖掘算法,并应用一简单的例子说明如何在数据库中发现分类规则,实验结果表明此算法可以大大提高系统潜在知识的清晰度。  相似文献   

5.
认为数据量的巨大和高维、用户交互与先验知识的利用等等是知识发现领域面临的问题和难点 .粗糙集理论是一种具有模糊边界的集合理论 ,它作为研究知识发现的新型工具 ,能严格地处理不精确数据的分类问题 ,被广泛应用于不相容决策表中的规则提取过程中 .针对粗糙集理论中属性约减和属性值约减这两个重要问题进行了研究 ,并介绍了数据集中挖掘分类规则的基本原理 ,同时利用 RS理论中核和核值的概念 ,提出了一个在数据集中发现没有冗余属性的最小归纳依赖关系并简化决策系统的数据挖掘算法 ,并应用一简单的例子说明如何在数据库中发现分类规则 ,实验结果表明此算法可以大大提高系统潜在知识的清晰度  相似文献   

6.
粗糙集理论为研究不精确数据的分析、推理,挖掘数据间的关系、发现潜在的知识提供了有效的工具。在数据挖掘技术中KNN算法是一个实现简单和分类准确性较高的方法,但是,当用于样本容量较大以及特征属性较多的类似医疗图像挖掘这样的领域时,其效率受到了很大的影响,找到一个删除最大冗余属性的方法成了解决这个问题的关键。将粗糙集理论与KNN算法结合起来,用粗糙集方法进行属性约简,有效地解决了KNN算法分类的这个缺点。  相似文献   

7.
基于Rough集的数据挖掘在教学评价中的应用   总被引:2,自引:0,他引:2  
基于粗集的数据挖掘的主要过程是数据预处理、约简及规则提取.为了分析教师教学行为和教学效果之间的关系,以教学评价的数据为基础,利用基于粗糙集的数据挖掘技术进行挖掘.实例研究中采用基于分明矩阵的属性约简算法和启发式属性值约简算法,去掉决策表中的冗余属性和属性值,得到了影响教学效果的关键因素刎和相关规则.  相似文献   

8.
结合粗糙集的属性约简和神经网络的分类机理,提出了一种混合算法. 首先应用粗糙集理论的属性约简作为预处理器,把冗余的属性从决策表中删去,然后运用神经网络进行分类. 这样可以大大降低向量维数,克服粗糙集对于决策表噪声比较敏感的缺点. 试验结果表明,与朴素贝叶斯、SVM、kNN传统分类方法相比,该方法在保持分类精度的基础上,分类速度有明显的提高,体现出较好的稳定性和容错性,尤其适用于特征向量多且难以分类的文本.  相似文献   

9.
基于粗集的不完备信息系统属性约简   总被引:21,自引:0,他引:21  
属性约简是粗集理论研究的核心内容之一。经典粗集理论是建立在完备信息基础之上的,然而在现实中,不完备信息系统的广泛存在极大地限制了粗集理论向实用化迈进。该文基于相容关系,将分布约简、最大分布约筒、分配约简引入不完备信息系统,提出了一种新的约简——分配序约简,并讨论了几种约简之间的关系。给出了分配约简的一种启发式算法:条件信息量约简算法,分析了该算法的时间复杂度。经实验检验,该算法是有效的。  相似文献   

10.
一种基于粗糙集的文本分类规则抽取方法   总被引:10,自引:0,他引:10  
随着文本数据库的日益增大,寻找新的文本数据处理方法变得十分紧迫。本文将粗糙集理论应用于文本自动分类的规则提取,提出了基于粗糙集理论的文本分类方法。把文本特征项的权值进行离散化处理后,作为规则的条件属性,文本所属的类别用作决策属性,构造决策表,然后通过决策表的知识约简算法提取出文本的分类规则。实验结果表明,该方法提取规则的分类正确率较高,分类速度较快。  相似文献   

11.
提出了一种基于粗糙集的Web日志挖掘模型,该模型采用粗糙集的方法对原始数据进行约简,然后应用粗糙集理论对数据进行定性分析和约简.最后结合一个Web日志实例验证了方法的可行性和有效性.  相似文献   

12.
一种改进的基于粗糙集的启发式值约简算法   总被引:1,自引:0,他引:1  
在求得决策表中属性值核的基础上,用属性重要度指导增加后续属性值,还引入包含度和支持度统计度量,生成了不同置信度水平下的决策规则集,并设计了基于规则集的分类算法。对Monk数据集的对比实验表明,该算法是有效的。  相似文献   

13.
粗糙集在决策系统中的应用   总被引:9,自引:1,他引:9  
介绍了粗糙集理论实现数据分类和规则推理的基本原理,对关系数据库中的二维决策表提出了一个问题解决模型,并在同时满足支持度和可信度的基础上对规则进行筛选,提高了决策的准确性和合理性。  相似文献   

14.
文章提出了一种利用粗糙集理论生成文本分类规则的方法.首先,抽取特征词并计算权重.然后,在权值离散化之后,构造决策表.其中,特征词作为条件属性,类别作为决策属性.之后,将文本用属性约简和属性相对约简进行处理,得出决策规则.最后给出分类算法.  相似文献   

15.
针对目前远程教育中个性化教学水平较低的问题,提出了一种基于粗糙集的Web学习者聚类算法,并应用粗糙集的约简方法解决了学习者特征数据中的属性冗余问题,提高了聚类算法的效率,从而提高了远程教学网站的个性化教学水平.  相似文献   

16.
基于粗集理论的一种规则提取方法   总被引:4,自引:0,他引:4  
介绍了粗集理论的基本概念,通过对现有基于粗集的最小规则提取算法的分析,发现其缺陷,提出了一种改进的基于粗糙集的规则提取方法,并用UCI数据库中的9个标准数据集从规则集的规则数目、规则集的平均规则长度、规则集的平均规则支持、规则集的预测精度等4个指标对改进的算法进行了测试和对比分析,实验表明了该算法的有效性.  相似文献   

17.
一种基于粗糙集理论的数据挖掘算法的研究   总被引:6,自引:0,他引:6  
研究了粗糙集理论在数据挖掘中的应用,提出了一种基于粗糙集理论的数据挖掘算法.首先对信息系统的数据加工泛化,构造其二进制可辨矩阵.对矩阵进行化简得到属性约简并生成规则.最后,结合银行申请信用卡的实例,利用上述方法进行数据挖掘,消去冗余属性,抽取决策规则.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号