首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
设函数f(x1,x2,…,xn)对xn有连续二阶偏导数,我们寻求函数方程n↑∑i=1(-1)^i-1[f(x1,…,xi xi 1,…,xi 1) f(x1,…,xi-xi-x(i 1),…,x(n 1))] (-1)^n2f(x1,x2,…,xn)=0的一般解.首先,给出了方程n↑∑i=l(-1)^i-1[F(x1,…,xi x(i 1),…,x(n 1)) F(x1,…,xi-x(i 1),…,x(n 1)]=0的一般解,其次,上述第1式对x(n 1)两次微分,并简化得到形如第2式的方程.第1个函数方程的一般解为f(x1,x2,…,xn)=(n-1)↑∑i=1(-1)^i-1[A(x1,…,xi x(i 1),…,xn) A(x1,…,xi-x(i 1)),…,xn)] (-1)^n-1 2A(xi,x2,…,x(n-1).其中A(x1,x2,…,x(n-1))是对x(n-1)具有连续二阶导数的任意函数。  相似文献   

2.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

3.
本文利用具有重结点的自然样条函数,讨论了线性泛函Ff=sum from i=0 to n-1[integral from a to b a_i(x)D~i f(x)dx+sum from j=0 to L~1 b_(ij)D~i f(x_(ij))]的广义Sard逼近问题。文中给出了线性泛函Lf=sum from i=0 to k sum from j=0 to k_1-1 a_(ij)D~j f(x_i)逼近F为n-1阶准确的存在定理与唯一性定理;给出了L做为F的广义Sard逼近的充分必要条件。  相似文献   

4.
提出函数另一种多重分割法的概念,即函数f(x)在对称区间上分成m个函数fk(x)(1≤k≤m),使得f(jx)=∑mk=1jk-1fk(x),且fk(j2x)=j2k-2fk(x),其中j=exp(π)/(m)i,证明了这种分割法的唯一性.当m=2,f(x)=expx时,即得著名的Euler公式.因此,这一新结果是Euler公式的一般推广.  相似文献   

5.
第一牛顿公式:已知xi(i=1,2......,n)的基本对称函数p_1=sum from i=1 (xi),p_2=sum from i≠j(x_ix_j),p_3=sum from i≠j=k(x_ix_jx_k...),P_n=multiply from i=1 to n(x_i);对称函数S_1=sum from i=1 to n(x_i),S_2=sum from i=1 to n(x_i~2),S_3=sum from i=1 to n(x_i~3),...,S_k=sum from i=1 to n(x_i~k)…,k=1,2,3,…,n-1试将对称函数用基本对称函数表出.解:问题可以用初等方法或用指定的一般方法或者更一般地借助于牛顿公式解答.我们考虑关于X的有理整函数:f(x)=(x-x_1)(x-x_2)(x-x_3)…(x-x_n)…(1)或f(x)=x~n-p_1x~(n-1) p_2x~(n-2)-p_3x~(n-3) … (-1)~n×p_n…(2)其中p_i(i=1,2,…,n)是关于X_i;的基本对称函数,由(1),(2)我们分别求出f(x h)f(x h)=(x h-x_1)(x h-x_2)(x h-x_3)…(x h-x_n)  相似文献   

6.
用一个单调函数ω(t) 为中介,利用Szasz-Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f,t)为特点,得到以下点态逼近逆定理对于f∈C[0,+∞),0≤λ≤1,φ(x)=x,δn(x)=φ(x)+1/n, 若|f(x)-Sn(f,x)|≤Mω(n-1/2δ1-λn(x)),其中ω(t)≥0, ω(ut)≤C(u2+1)ω(t),则对任意t>0,有ω2φλ(f,t)≤Ct2∑0<n≤t-1(n+1)ω(n-1)+Ct2‖f‖,ω1(f,t)≤Ct∑0<n≤t-1ω(n-(2-λ)/(2))+Ct‖f‖.此结果推广了有关ωφ(f,t)和ω(f,t)的结果.  相似文献   

7.
考虑以下高阶多点边值问题({ у(n)=f(t,y,y',…,y(n-1),0≤t≤1,у(i)(ξj)=0,0≤i≤nj-1,j=0,1,…,k,(k∑j=0)nj=n),其中0=ξ0<ξ1<…<ξk=1,关于f有非线性增长的情况,利用基于度理论的不动点定理,对上述边值问题建立了解的存在唯一性定理.  相似文献   

8.
用一个单调函数ω(t)为中介 ,利用 Szász- Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f ,t)为特点 ,得到以下点态逼近逆定理 :对于 f∈ C[0 , ∞ ) ,0≤λ≤ 1,φ(x) =x ,δn(x) =φ(x) 1/ n ,若|f (x) - Sn(f ,x) |≤ Mω(n- 1 /2δ1 -λn (x) ) ,其中ω(t)≥ 0 , ω(ut)≤ C(u2 1)ω(t) ,则对任意 t>0 ,有ω2φλ(f ,t)≤ Ct2 ∑0 相似文献   

9.
Baskakov算子对有界变差函数的点态逼近   总被引:1,自引:0,他引:1  
设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e~(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x~k/(1+x)~(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。  相似文献   

10.
本文研究了一类二阶非线性中立型时滞差分方程Δ2(x(n) m∑i=1pi(n)x(n-ki)) q(n)f(x(n-σ))=0的最终正解的存在性,并得出了其解振动的充分条件.  相似文献   

11.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

12.
设$d,\ m$ 与 $n$ 均为正整数. 在1915年, Theisinger证明当$n\ge 2$时,$n$次调和和 $\sum_{k=1}^n\frac{1}{k}$不是一个整数. 在1946年,Erd\H{o}s和Niven 证明仅有有限多个$n$, 使得关于$1/m, 1/(m+d),..., 1/(m+nd)$ 的一个或多个初等对称函数是整数.在2015年, Wang 和 Hong 证明当 $n\ge 2$ 时,$1,1/3,...,1/(2n-1)$ 的所有初等对称函数均非整数.在本文中, 我们证明如下结果成立: 如果$n\ge 2$为正整数, 那么对任意$n$个正整数 $s_0,..., s_{n-1}$, 关于$1,1/3^{s_{1}},...,1/(2n-1)^{s_{n-1}}$的第二类初等对称函数 $$\sum\limits_{0\le i相似文献   

13.
将整数$k$ 和 $j$的最大公约数记为$\gcd(k, j)$.设$k$为正整数, $f$为任意的算术函数, $r$是任一固定的整数. 其中$n$为任意正整数. 对实数$x \ge 2$, 我们定义与$f$相关联的gcd-和函数$M_r(x; f)$如下: $$M_r(x; f):=\sum\limits_{k \le x}\frac{1}{k^{r+1}}\sum\limits_{j=1}^k j^rf(\gcd(k,j)).$$ 本论文中, 我们主要利用Kiuchi在2017年所得到的关于$M_r(x; f)$ 的一个恒等式, 以及初等和解析方法, 给出了$ M_r(x;J_k)$的渐近公式.若当函数$J_k$定义为$J_k(n):=n^k\prod\limits_{p|n}(1-\frac{1}{p^k})$, 这加强了Kiuchi和Saad eddin在2018年所得到的结果  相似文献   

14.
得到了一些特殊图类的解析值.~利用数学归纳和分类讨论的方法,~%给出固定阶数的单圈图的解析的紧的界.~%证明了在所有阶数为~$n$~的单圈图中,~%图~$\Delta_{n-3}$~取得最小的~$a(G)$~和~$b(G)$;~图~$K_{1,n-1}^{+}$~%取得最大的~$a(G)$~和~$b(G)$.~%这里图~$\Delta_{n-3}$~是由联结~$K_{3}$~一个顶点和~$P_{n-3}$~的一个端点而得到,~%图~$K_{1,n-1}^{+}$~是由联结图~$K_{1,n-1}$~中两个度为~$1$~的顶点而得到.  相似文献   

15.
利用从属关系给出~$\left|\left(g(z)/f(z)\right)^\alpha\right|$ 的估计,并运用构造一个非负函数和对复变函数模的积分进行估计的方法, 对\ $\beta$ 级\ $\alpha$ 型\ $\lambda$-Bazilevi$\check{c}$ 函数类\ $B(\lambda,\alpha,\beta)$的对数系数~$b_n$ 进行研究, 得到~$|b_{n}|\leq A\mathrm{log}n/n+B/n+32\beta/(1-|1-2\beta|)$, 其中~$A,B$ 是绝对常数, 推广了相关结果.  相似文献   

16.
研究了微分方程~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=0$和 ~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=R_{1}(\mathrm{e}^{z})+R_{2}(\mathrm{e}^{-z})$~的解以及它们的一阶导数与小函数的关系, 其中~$P_{j}(z)$~,~$Q_{j}(z)$~$(j=0,1,2,\cdots,k-1)$~和~$R_{i}(z)(i=1,2)$~是关于~z~的多项式.  相似文献   

17.
0 IntroductionIntheprocessofR&Ditem ,thereisusuallycompetition .ManyfirmswanttoinvestR&Dtoobtainapatent.Lury[1 ] gaveanequilibriuminvestmentundertheconditionofone timeinvestmentandcontinuousinvestmentwhenthepayoffwasafixedprize.Ref.[2 ]analyzedtheeffectofinformationsharinginR&D .TherearemanyliteraturesaboutanalysisofR&DlevelswhenfirmscompeteinoutputmarketafterR&Dsucceeds[3 ,4] .Additionally ,todecideinvestmentlevel,therearemanyliteraturesaboutR&Ditem’spricing .MondherBellalah[5] ,K .…  相似文献   

18.
设K是一个正整数。W~k(R~n)表示所有定义在R~n内的函数f(x)〔x=(x1,x2…,xn)〕使得它和它的S(|S|=sum from j=1 to n S_j≤K)阶广义导数都属于L~2(R~n)的函数的集合。对K=n=1,设H_0(R~1)={f(x);f和它的广义导数Df属于L~2(R~1),但f=f(a、e),这里f是绝对连续函数}。这篇文章的主要结果是:H_0(R~1)=W~1(R~1)。  相似文献   

19.
研究了二阶线性周期微分方程$f^{\prime\prime}+[P_1(e^{z})+P_2(e^{-z})]f^{\prime}+[Q_1(e^{z})+Q_2(e^{-z})]f=0$和$f^{\prime\prime}+[P_1(e^{z})+P_2(e^{-z})]f^{\prime}+[Q_1(e^{z})+Q_2(e^{-z})]f=R_1(e^{z})+R_2(e^{-z})$的解以及它们的一阶导数、二阶导数、微分多项式与小函数之间的关系, 其中$P_j(z)$和$Q_j(z)$及$R_j(z)$(j=1,2)是关于z的多项式.  相似文献   

20.
在θ阶正规齐型空间上 ,设算子列 {Sk}k∈ Z是恒等逼近 ,记 Dk =Sk- Sk-1,DNk =∑| j| 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号