首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
该文利用天津机场常规观测资料、卫星和雷达资料,对2012年6月9日的强对流天气过程进行综合分析。分析表明:此次过程是冷涡天气造成,地面暧湿,高空冷空气侵入造成不稳定释放,形成雷暴。雷达图像"V"型缺口显示大风存在,并有降雹发生。这些中小尺度系统有雷暴群、飑线等,它的特点是:尺度小、变化快、发展剧烈,常带来灾害性的大风和局地暴雨甚至冰雹。该文通过多项现代化设备及资料的应用如自动观测系统、雷达、卫星等探测资料,详细分析了此次天气过程,这对于观测员的日常工作起到重要的指导作用,随着现代化观测仪器的配备,大大提高了观测准确率。  相似文献   

2.
利用常规观测资料,根据天气学原理,对2018年4月5—6日的太原大风天气过程进行分析。结果表明:这次大风天气过程是由高空槽发展东移,与鄂霍茨克海附近冷涡分裂的横槽转竖合并加强形成的较深的西风槽以及地面冷锋过境、锋后冷高压东移造成的。其中4月5日古交站大风主要是冷锋过境、气压梯度增大造成的,6日白天太原全市大风主要是横槽转竖、高空动量下传造成的。  相似文献   

3.
为有针对性地开展雷暴大风的预报服务,利用常规高空、地面观测资料、风廓线产品、江西雷达拼图产品等资料分析了2021年5月21日景德镇地区一次大风、冰雹强天气过程。主要结论如下:1)此次强对流过程强度大,具有一定极端性。雷暴影响前后出现气压涌升、气温骤降等特点。通过相邻2站要素对比发现,极端大风与2站温压差最大时刻吻合。2...  相似文献   

4.
艾瑞瑞 《河南科学》2014,(2):235-239
利用濮阳雷达站的新一代多普勒雷达产品,结合高空和地面观测资料,分析了2013年8月11日傍晚出现在豫北地区(安阳)的一次强对流天气过程.结果表明:这次天气以是灾害性大风为主,伴随有雷电和短时强降水,局地还有冰雹出现的强对流天气;此次强对流的主要影响系统有副热带高压、500 hPa低槽、中低层切变线和地面冷锋,低层垂直风切变和较强的层结不稳定有利于弓形回波的产生;反射率因子图显示系统为一个典型的弓形回波带,顶部回波最强,同径向速度图均表现出明显的"V"型缺口;雷达资料分析表明,中尺度涡旋(M)、垂直液态水含量(VIL)和回波顶高度值(ET)对雷雨、冰雹和地面破坏性大风等强对流天气有很好的指示作用.  相似文献   

5.
利用常规观测资料、地面自动站资料、卫星云图和多普勒天气雷达资料,对比分析了发生在滇东北的2次飑线过程.结果表明:边界层辐合线是强对流产生的触发系统,山脉的抬升作用有利于强对流的产生和发展.2007.6.14飑线发生在冷锋前暖区中,以大风冰雹天气为主.2009.6.19飑线发生在冷锋前沿,前期以大风冰雹天气为主,后期出现强降水.雷达回波上2次飑线都出现弓形回波特征和前沿低层辐合区,但2007.6.14飑线表现为单体弓形回波,直接产生大风冰雹天气.2009.6.19飑线表现为弓形回波复合体,并伴有中气旋出现.飑线右前侧超级单体是产生强对流天气的直接系统.飑线前沿低层辐合区的长时间维持导致大范围强降水出现.  相似文献   

6.
利用风廓线雷达、地面加密自动站资料和多普勒雷达等非常规观测资料以及NCEP再分析资料,对2019年4月25日发生在莆田的一次冰雹过程进行分析,探讨多源探测资料在冰雹天气预报预警中的应用.结果表明,①500 hPa低槽、低层切变线和地面冷空气是冰雹发生的主要影响系统,不稳定层结、中低层切变线、高低空急流和地面辐合线提供了...  相似文献   

7.
利用太原MICAPS高低空实况、探空、物理量场等资料对太原2011年6月7日一次罕见的较强区域雷暴大风过程进行潜势预报分析,为太原区域雷暴大风潜势预报提供参考依据。研究表明,此次过程具有范围大、强度强的特点,属于太原罕见的较强区域雷暴大风过程;500 hPa横槽转竖以及低空切变线,为此次过程提供了有利的动力抬升条件,影响系统从低层到高层接近于垂直,层结不稳定,有利于强对流天气的发生;近地层存在逆温,有利于不稳定能量的积累,"上干下湿"的层结结构,潜在不稳定,有利于强对流天气的产生;沙氏指数SI对此次雷暴大风天气有一定的指示意义,下沉对流有效位能DCAPE在此次雷暴大风过程中有较好的指示效果;500 hPa冷平流、850 hPa暖平流使层结更加趋于不稳定,潜势上更有利于雷暴大风等强对流天气的发生;冷锋在不断发展和南压过程中触发了此次区域雷暴大风过程。  相似文献   

8.
利用MICAPS常规资料、灾情调查资料、雷达回拨资料等,综合分析了2017年6月22日出现在巴彦淖尔市的冰雹天气。结果表明:500h Pa温度槽与850h Pa小温度脊的叠加造成的上干冷下暖湿层结是此次局地冰雹天气形成的主要原因;地面低压倒槽内的辐合线和冷高压前的辐合线是前后两个时间段降雹的直接触发系统;虽然探空资料中对流层整体受西北气流控制,但VAD风廓线表明700h Pa附近有明显的扰动经过。  相似文献   

9.
利用常规气象观测资料、NCEP/NCAR1°×1°再分析资料和风廓线雷达资料,对2020年3月18日保定市一次大风天气过程进行诊断分析,探讨此次大风过程的成因,结果表明:这是一次偏北路径冷空气南下形成的大风,主要影响系统为高空槽、地面冷高压以及冷锋;贝加尔湖冷高压分裂南下,河北地区气压梯度大,变压强;负涡度平流产生较强下沉运动,有利于槽后较高动量的冷空气向下传送;高空急流的抽吸作用使整层垂直运动加强,高空急流入口区次级环流的形成加速了大气的上下交换,"漏斗"状北风强风速带向地面伸展,激发了地面大风的出现;锋区明显,冷平流强,大气层结极不稳定,有利于高空动量下传,形成地面大风。  相似文献   

10.
梁钰  高媛媛  吕林宜  齐伊玲 《河南科学》2013,(11):1970-1976
2012年3月23日河南省发生了一次致灾大风天气过程。此次天气过程强度大、时间短,影响范围广,灾害比较大。为了找出此次大风发生的成因,利用常规观测资料以及NCEP分析资料对这次过程进行诊断分析。结果表明:①此次致灾大风过程是在中高层低槽强烈斜压发展,槽后强的冷平流不断南下,较强的高空风动量下传,高低空存在强的下沉运动,地面大的气压梯度和变压梯度等共同作用下产生的;②此次大风天气过程中,温度槽始终落后于高度槽,强烈的斜压作用使高空槽发展。在槽后强冷平流作用下,高空槽加深发展并东移南下,引导冷空气东移南下,冷空气向南移动的过程中,冷平流不断加强,河南上空冷暖平流共同作用,使得锋区进一步加强,风力加大;③中高层的强冷平流是此次大风过程的主要热力因子,低层冷平流较弱;④此次大风天气中高空风动量下传起到了重要作用,强风速从河南西北部自上而下,自西向东传播;⑤强的气压梯度力是此次大风天气形成的主要原因之一。预报河南大风时要关注西安、北京和郑州之间的气压差,在西北路冷空气影响时,如果西安加压,北京减压,风速就有增大的趋势,反之,如果西安和北京都加压,虽然西安和郑州的气压梯度较大,风力也不会很大。  相似文献   

11.
利用常规天气资料、自动观测数据和Ncep再分析资料对广汉机场2013年5月28日的大风天气进行综合分析。结果表明:此次过程是由于地面冷锋过境引起的锋后大风,冷锋天气系统深厚且强大,南下过程时有所加强,低空急流的存在也对地面大风有影响,分析3小时变压场、温度平流场、垂直速度场对预报大风天气有一定作用。  相似文献   

12.
2007年5月和2006年6月两次相似的强对流天气给浙江省带来了强烈的雷雨大风和短时冰雹天气,这两次过程最主要的特征表现在中高层蕴含深厚的冷空气条件,而低层存在浅薄的暖湿气流.综合运用雷达卫星及NCEP实况资料,对比分析了强对流发生发展的环境条件、云图及回波特征,进而揭示出此类天气的主要特点和可预报性.分析发现,925 hPa的切变线形成中尺度触发机制,对预报雷暴的发展走向具有不可忽视的作用;冷空气南下造成的冷暖平流交汇是触发对流的主要原因;云图上,云系移动前方形成较大的亮温梯度,后方形成干涌边界;雷达回波中表现出阵风锋的影响,这些都是地面灾害性大风产生的主要征兆.另外,强回波对应较大的风向切变区和悬挂回波是冰雹产生的重要特征.  相似文献   

13.
张智超  程巍 《海峡科学》2021,(3):11-13,31
大风是福州长乐国际机场常见的天气现象,该文采用福州长乐国际机场1998—2019年地面气象例行观测资料,对机场大风天气的年际变化特点、月季变化特点、日变化特点及产生大风的主要天气形势等进行了统计分析.结果表明,福州长乐国际机场大风活动期主要为夏、秋两季,大风出现日变化不明显;本场产生大风的天气形势主要为台风和强冷空气或...  相似文献   

14.
许波  耿建武  黄坤祥  刘燕  陈翔  汤如茂 《科技信息》2011,(6):365-366,368
应用南京多普勒天气雷达资料和洪泽站地面气象资料,对2005—2009年6-8月洪泽站出现的19次雷暴大风天气过程进行了分析。根据雷达基本反射率特征,雷暴大风的雷达回波形态有以下五种类型:弓状回波、窄带回波、带状回波、“人”字形回波、钩状回波。其中弓状回波出现次数最多,钩状回波产生的大风最强。VIL值≥40kg/m2对雷暴大风有指示作用,VIL值≥65kg/m2时除出现雷暴大风外还有冰雹发生。此外,分析了雷暴大风回波的路径,共有四条,其中西南路和西路为主要路径,各7次,西北路4次,北路最少,只有1次。西南路多局地回波,生成于明光和盱眙西南部,与当地的丘陵地形有关;西北路的泗洪、泗阳与洪泽湖交界的陆地一侧也易产生局地回波。这些特征对洪泽湖雷暴大风临近预报预警有指导价值,对保障航运有现实意义。  相似文献   

15.
突风一直以来都是危及飞行安全的重要气象要素之一,造成国民经济和人民生命财产的损失。利用常规观测资料、ADWR-X多普勒气象雷达资料和ERA5逐小时再分析资料,对四川盆地西部一次爆发性大风过程中风场的精细化特征、成因及对飞行的影响进行诊断和模拟研究,结果表明:此次大风过程风速增长快,爆发性强。地面风速自午后开始出现4次波动,且每一次波动期间风速峰值呈增加趋势,时间呈缩短趋势。由于第4次波动风速呈爆发性增加,最大瞬时风达到了16.1 m/s,地面风速脉动值超过5 m/s,致使跑道区域内流场的不稳定性增加,起降跑道侧风值超过了中小型飞行器的起降标准。高空动量下传对本次大风过程中风速的爆发性增加起主导作用。中层强偏南气流与低层偏北急流配和,中层辐合以及低层辐散下沉的垂直结构使得低层下沉气流异常强劲,将900~850 hPa的大风核快速向地面传导。通过天气研究与预报(weather research and forecasting, WRF)模式四重嵌套对本次过程进行模拟,表明WRF对盆地西部冷空气补充南下引起的在风速演变趋势、风速最大值和大风影响时段的风向有较好的模拟能力,对飞行起飞和着陆有一...  相似文献   

16.
利用地面常规观测资料和NCEP再分析资料,对2007年12月19日至21日江苏省一次连续大雾天气过程进行了初步诊断分析。通过对主要物理量的计算和分析,总结出了该次大雾天气过程的环流背景、大雾动力和热力特征及大雾发生、维持和消散的天气学条件。结果表明:稳定的高空环流形势,地面弱高压的维持,近地层的辐射冷却和地面湿度大是这次大雾产生的必要条件,而低层西南暖湿气流的输入是大雾长时间维持的原因。使得大雾消散的原因是由于强冷空气入侵,出现偏北大风和降温,破坏了稳定的大气层结。  相似文献   

17.
利用T639温度平流0场资料对2014年12月1日的一次寒潮天气过程的环流背景、影响系统、物理量场进行了综合分析。结果表明:此次寒潮天气的特点是前期温度较高,冷空气较强,强降温的同时伴随大风;乌拉尔山高压脊的建立和崩溃以及横槽的转竖和地面冷高压加强是此次寒潮天气的主要影响系统;温度平流场上的强冷平流是造成此次寒潮的主要原因;高空强大的西风急流有利于冷空气不断向寒潮影响区输送和高空的动量下传;横槽前存在强烈的上升气流,横槽后存在强烈的下沉运动,有利于横槽东移转竖。  相似文献   

18.
2016年第17号台风"鲇鱼"正面袭击福建省,并于9月26~29日期间给福建带来了严重的风雨灾害,尤其是大风带来的破坏影响非常严重。该文对1617"鲇鱼"台风大风的成因进行分析,得出结论:(1)"鲇鱼"外围螺旋雨带较台风本体先行逼近以及台湾海峡的狭管效应导致台风大风提早出现,且强风多集中在福建中北部沿海。(2)"鲇鱼"影响福建前期,地面冷空气自中偏东路向南补充,使得福建中北部沿海气压梯度明显增大,这是造成该地区起风时间提早、大风强度强、大风维持时间长的原因之一。(3)对流能量释放造成的大风与台风环流带来的大风叠加产生的增幅效应,也可能是"鲇鱼"在福建造成大范围、长时间强风的一个原因。(4)预报员根据积累的台风大风预报经验并结合丰富的观测资料,对数值模式输出的产品进行订正,将有利于做出准确率更高的大风预报。  相似文献   

19.
利用本站多普勒雷达观测资料,结合高空环流形势,对2008年6月25日鲁北沿海地区强烈冰雹天气过程进行诊断分析,研究发现:在低涡背景下高空西北气流带来的冷空气,垂直风切变明显;雷达回波分析显示此次天气过程是一次超级单体风暴,有一个中等强度的中气旋,最大转动速度达25.1 m/s,地面风速达18.0 m/s;液态垂直含水量(Vertieally Integrated Liquid Water,VIL)的演变对冰雹预报有很好的指示作用,在短时预报中VIL因子可作为冰雹预报的指示因子。  相似文献   

20.
利用FY2G卫星云图资料、地面气象要素、重要天气报和WebGIS雷达拼图资料,对2000-2018年宜丰和上高区域20次(日)雷暴大风天气进行统计、对比、分类分析,结果表明:影响宜丰和上高县级区域的雷暴大风,在FY2G卫星云图上具有3类云图特征,即带状结构云系、团状结构云系和块状结构云系。其中,带状结构云系(7次)有3种演变形态:东北~西南走向的短带云系、MCS中尺度对流系统和南北走向的飑线云带;团状结构云系(7次)有3种演变形态:团状不规则云系、MCC中尺度对流复合体、MCS中尺度对流系统;块状结构云系(6次)有3种演变形态:孤立MCS中尺度对流系统、孤立强单体对流云系、孤立小单体对流云系。雷暴大风常伴随短时强降水出现,有时雷暴大风还会伴随冰雹同时出现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号