首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
采用特殊的水电极介质阻挡放电实验装置,在空气/氩气介质阻挡放电中得到了四边形斑图、六边形斑图,通过对氮分子第2正带系(C3Πu→B3Πg)的发射光谱进行分析,研究了这2种斑图的微放电通道中的氮分子的振动温度.实验结果表明,随着外加电压升高出现的四边形斑图和六边形斑图,其微放电通道中的分子振动温度依次升高.  相似文献   

2.
实验采用双水电极装置,在中等pd(p为气体的压强,d为放电间隙)值介质阻挡放电中观察到了六边形斑图.实验发现,随电压的升高,六边形斑图是由弥散放电模式演化而成.通过测量各模式的光电流信号,发现在弥散放电模式时放电脉冲是单个的,而出现丝状放电时光信号表现为多个脉冲,且放电脉冲个数随外加电压的升高而增加.  相似文献   

3.
采用介质阻挡放电装置,研究了1.01×105Pa下空气和氩气的混合气体中气体成分对超四边形斑图的影响.实验发现,随着空气体积分数的增大,产生超四边形斑图所需要的驱动电压也随之升高,同时,超四边形斑图越来越不稳定,放电丝直径逐渐变小,当空气体积分数大于4%时放电丝个数由每行6个增加到7个.  相似文献   

4.
采用特殊设计的水电极介质阻挡放电装置,使用氩气在一个大气压的实验条件下获得了稳定的图灵斑图,并通过对放电电流和光信号进行研究,发现这时放电是弥散的.实验表明稳定斑图的形成与放电间隙的气体成分、电源电压和频率等都有一定的关系.  相似文献   

5.
采用发射光谱法,研究了气体压强为1.01×105Pa条件下氩气介质阻挡放电单个微放电丝通道中电子激发温度的空间分布.通过氩原子763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)2条谱线相对强度之比计算电子激发温度.实验结果表明:在只有1个微放电丝的条件下,电子激发温度在放电通道中不是1个恒定值,而是在放电通道正中间出现1个最大值,越靠近电极越小.本工作对研究介质阻挡放电中等离子体的动力学过程和单个微放电丝模型的建立具有重要意义.  相似文献   

6.
采用双水电极装置,在大气压下介质阻挡放电系统中得到了3种不同的四边形斑图,为了明析它们的区别,对其中放电单元的发光特性进行了研究.结果表明:随着电压的升高,构成斑图的放电单元面积变大,其光信号经历了每电压半周期1次到2次再到多次的变化过程.分析表明,壁电荷在其中起到了重要的作用.  相似文献   

7.
介质阻挡放电斑图动力学研究进展   总被引:5,自引:0,他引:5  
介质阻挡放电斑图动力学是一门新兴的交叉学科,对它的研究已经引起了人们广泛的关注.介质阻挡放电中复杂的非线性过程以及系统经历的高级动力学分叉过程使得系统可呈现出丰富的时空斑图与时空对称性破缺.因此介质阻挡放电成为研究斑图动力学的一个新的系统,它为目前实验室斑图动力学的研究注入了新的内容.文中对介质阻挡放电的应用研究与应用基础研究作了简要的介绍,着重介绍了介质阻挡放电斑图动力学的研究进展,并对这一领域的研究进行了展望.  相似文献   

8.
利用双水电极实验装置,在介质阻挡放电系统中观察到了具有不同空间对称性的斑图之间的演化过程.在实验中,通过改变外界驱动电压发现:在升高电压的过程中,条纹斑图会发生失稳,并逐渐形成六边形斑图;形成规则的六边形斑图后,降低驱动电压,六边形斑图会失稳再次形成条纹结构.进一步降低驱动电压,在条纹斑图中观察到了横向调制失稳现象.  相似文献   

9.
采用双水电极介质阻挡放电装置,利用光学方法研究了6.06×104Pa氩/空气混合气体的斑图演化过程.结果表明随驱动电压从击穿值不断增加,斑图经历了一系列的演变过程:均匀放电、六边形结构、随机微放电丝结构、第二次六边形斑图、四边形斑图、条带斑图、最后又出现均匀放电.用二维傅立叶变换的方法把斑图变换到频域中,得到了频域下的斑图并对其进行了分析.  相似文献   

10.
混合气体介质阻挡放电中的电子激发温度   总被引:1,自引:0,他引:1  
采用光谱法,研究大气压下氩气/空气介质阻挡放电中电子激发温度随空气含量的变化.放电装置为水电极介质阻挡放电装置,通过氩原子763.51nm(2P6→1S5)和772.42nm(2P2→1S3)两条谱线相对强度之比计算电子激发温度.实验结果表明:当空气的体积分数为10%~60%时,电子激发温度随空气含量的增加而减小.  相似文献   

11.
介质阻挡放电被广泛地应用于材料合成、表面处理和污染控制等领域.为了提高它的应用效率,人们期望测得其各种等离子体参量,如气体温度、电子密度以及电子激发温度等.本实验利用波尔兹曼图解法分析了N2+第一负带系(B2∑u+→X2∑g+)的(0,0)带的发射谱线,对介质阻挡放电等离子体的转动温度(气体温度)进行了测量.通过改变实验条件研究了放电气体中氩气含量和气压对等离子体气体温度的影响.结果表明:气体温度随气压的增大而增大,其变化范围是490~550 K,但氩气含量对气体温度的影响不大.  相似文献   

12.
利用平行管水电极介质阻挡放电装置,在大气压氩气和空气混合气体中,得到了均匀狭缝等离子体,并采用光谱方法,研究了微间距介质阻挡放电的放电丝分布均匀时电子密度.实验测量了等离子体发射的氩原子696.54 nm谱线,通过反卷积程序分离出Stark展宽,由此得到均匀放电时等离子体电子密度约为8.79×1015cm-3.  相似文献   

13.
利用对介质阻挡放电装置,在放电电极上覆盖上相同面积不同边界的绝缘介质,观察它的放电的特性,对其放电模式及放电产生的等离子体重要参数电子激发温度进行了记录与计算.实验结果表明:由于放电具有相同的面积,导致间隙间的电容值相同,所以导致击穿电压、放电的模式、放电产生等离子体中的电子激发温度基本相同.  相似文献   

14.
研究了介质阻挡放电中放电特性随气体流量的变化.结果表明,击穿电压、放电的空间分布、电流波形等均随气体流量的改变而改变.击穿电压在静态气体中最高,随气体流量的增加呈现复杂行为;放电的空间分布在气体流量增加过程中由类四边形斑图转变为均匀的类辉光放电,最后出现局部的条纹斑图;而此过程中电流的脉冲数则先减小后增加.实验发现,存在一个适当的气体流量,使得击穿电压出现最低值,放电区呈现均匀的类辉光放电.  相似文献   

15.
使用水电极装置,在氩气/空气介质阻挡放电中,通过对氮分子第二正带系(C3∏u→B3∏g)的发射谱线进行分析,研究了氮分子(C3∏u)的振动温度随压强的变化.实验结果表明:氮分子(C3∏u)振动温度随压强的增大而减小.  相似文献   

16.
在1.01×105Pa下测量了针-针电极空气介质阻挡放电振动温度的时间行为.实验发现在单个放电脉冲期间,振动温度不是1个恒定值,而是随时间呈现先增大再减小的变化趋势.且振动温度峰值时刻较放电电流峰值约滞后33 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号