首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.  相似文献   

2.
S H Shen  L Bastien  B I Posner  P Chrétien 《Nature》1991,352(6337):736-739
The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.  相似文献   

3.
Eph receptors and ephrins restrict cell intermingling and communication.   总被引:25,自引:0,他引:25  
G Mellitzer  Q Xu  D G Wilkinson 《Nature》1999,400(6739):77-81
Eph proteins are receptors with tyrosine-kinase activity which, with their ephrin ligands, mediate contact-dependent cell interactions that are implicated in the repulsion mechanisms that guide migrating cells and neuronal growth cones to specific destinations. Ephrin-B proteins have conserved cytoplasmic tyrosine residues that are phosphorylated upon interaction with an EphB receptor, and may transduce signals that regulate a cellular response. Because Eph receptors and ephrins have complementary expression in many tissues during embryogenesis, bidirectional activation of Eph receptors and ephrin-B proteins could occur at interfaces of their expression domains, for example at segment boundaries in the vertebrate hindbrain. Previous work has implicated Eph receptors and ephrin-B proteins in the restriction of cell intermingling between hindbrain segments. We therefore analysed whether complementary expression of Eph receptors and ephrins restricts cell intermingling, and whether this requires bidirectional or unidirectional signalling. Here we report that bidirectional but not unidirectional signalling restricts the intermingling of adjacent cell populations, whereas unidirectional activation is sufficient to restrict cell communication through gap junctions. These results reveal that Eph receptors and ephrins regulate two aspects of cell behaviour that can stabilize a distinct identity of adjacent cell populations.  相似文献   

4.
5.
S G Clark  M J Stern  H R Horvitz 《Nature》1992,356(6367):340-344
The induction of the hermaphrodite vulva and the migration of the sex myoblasts in the nematode Caenorhabditis elegans are both controlled by intercellular signalling. The gonadal anchor cell induces formation of the vulva from nearby hypodermal cells, and a set of somatic gonadal cells attract the migrating sex myoblasts to their final positions. Many genes required for vulval induction have been identified, including the let-23 receptor tyrosine kinase gene and the let-60 ras gene. We report here the identification and characterization of a new gene, sem-5 (sem, sex muscle abnormal), that acts both in vulval induction and in sex myoblast migration. On the basis of its DNA sequence, sem-5 encodes a novel 228-amino-acid protein which consists almost entirely of one SH2 (SH, src homology region) and two SH3 domains. SH2 and SH3 domains are present in many signalling proteins regulated by receptor and non-receptor tyrosine kinases. Mutations that impair sem-5 activity alter residues that are highly conserved among different SH2 and SH3 domains. Our results indicate that the sem-5 gene encodes a novel protein that functions in at least two distinct cell-signalling processes.  相似文献   

6.
7.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

8.
Crystal structure of a Src-homology 3 (SH3) domain.   总被引:28,自引:0,他引:28  
A Musacchio  M Noble  R Pauptit  R Wierenga  M Saraste 《Nature》1992,359(6398):851-855
The Src-homologous SH3 domain is a small domain present in a large number of proteins that are involved in signal transduction, such as the Src protein tyrosine kinase, or in membrane-cytoskeleton interactions, but the function of SH3 is still unknown (reviewed in refs 1-3). Here we report the three-dimensional structure at 1.8 A resolution of the SH3 domain of the cytoskeletal protein spectrin expressed in Escherichia coli. The domain is a compact beta-barrel made of five antiparallel beta-strands. The amino acids that are conserved in the SH3 sequences are located close to each other on one side of the molecule. This surface is rich in aromatic and carboxylic amino acids, and is distal to the region of the molecule where the N and C termini reside and where SH3 inserts into the alpha-spectrin chain. We suggest that a protein ligand binds to this conserved surface of SH3.  相似文献   

9.
Receptor protein-tyrosine kinases, through phosphorylation of specific tyrosine residues, generate high-affinity binding sites which direct assembly of multienzyme signalling complexes. Many of these signalling proteins, including phospholipase C gamma, GTPase-activating protein and phosphatidylinositol-3-OH kinase, contain src-homology 2 (SH2) domains, which bind with high affinity and specificity to tyrosine-phosphorylated sequences. The critical role played by SH2 domains in signalling has been highlighted by recent studies showing that mutation of specific phosphorylation sites on the platelet-derived growth factor receptor impair its association with phosphatidylinositol-3-OH kinase, preventing growth factor-induced mitogenesis. Here we report the solution structure of an isolated SH2 domain from the 85K regulatory subunit of phosphatidylinositol-3-OH kinase, determined using multidimensional nuclear magnetic resonance spectroscopy. The structure is characterized by a central region of beta-sheet flanked by two alpha-helices, with a highly flexible loop close to functionally important residues previously identified by site-directed mutagenesis.  相似文献   

10.
3BP2最初被作为一个Abl SH3结合蛋白被分离,但是其功能并不确定。除了富含脯氨酸区域和间接与SH3结合外,3BP2还有一个PH和Src同源区2结构域(SH2)。 Src同源区2结构域(SH2)是一个很大的家族,它们通过人体基因组编码的模块间的相互作用来识别酪氨酸磷酸化序列,由此在细胞信号转导和控制中发挥中心作用。肽基可以被SH2识别从而形成一种复合物.这篇文章的内容是关于3BP2的SH2结构域的晶体结构和与来源于FRS2的肽的复合物的晶体结构。依照表面电荷性质,这个结合袋的特异性是半极性半中性的。这个结构的特点明显的表现在,对于亲和性来说,Glu(p+1)比Ala (p+1) 或 Val (p+1)更为重要。  相似文献   

11.
EPS8 and E3B1 transduce signals from Ras to Rac.   总被引:27,自引:0,他引:27  
The small guanine nucleotide (GTP)-binding protein Rac regulates mitogen-induced cytoskeletal changes and c-Jun amino-terminal kinase (JNK), and its activity is required for Ras-mediated cell transformation. Epistatic analysis placed Rac as a key downstream target in Ras signalling; however, the biochemical mechanism regulating the cross-talk among these small GTP-binding proteins remains to be elucidated. Eps8 (relative molecular mass 97,000) is a substrate of receptors with tyrosine kinase activity which binds, through its SH3 domain, to a protein designated E3b1/Abi-1. Here we show that Eps8 and E3b1/Abi-1 participate in the transduction of signals from Ras to Rac, by regulating Rac-specific guanine nucleotide exchange factor (GEF) activities. We also show that Eps8, E3b1 and Sos-1 form a tri-complex in vivo that exhibits Rac-specific GEF activity in vitro. We propose a model in which Eps8 mediates the transfer of signals between Ras and Rac, by forming a complex with E3b1 and Sos-1.  相似文献   

12.
Integrins not only bind adhesive ligands, they also act as signalling receptors. Both functions allow the integrin alphaIIbbeta3 to mediate platelet aggregation. Platelet agonists activate alphaIIbbeta3 (inside-out signalling) to allow the binding of soluble fibrinogen. Subsequent platelet aggregation leads to outside-in alphaIIbbeta3 signalling, which results in calcium mobilization, tyrosine phosphorylation of numerous proteins including beta3 itself, increased cytoskeletal reorganisation and further activation of alphaIIbbeta3. Thus, outside-in signals enhance aggregation, although the mechanisms and functional consequences of specific signalling events remain unclear. Here we describe a mouse that expresses an alphaIIbbeta3 in which the tyrosines in the integrin cytoplasmic tyrosine motif have been mutated to phenylalanines. These mice are selectively impaired in outside-in alphaIIbbeta3 signalling, with defective aggregation and clot-retraction responses in vitro, and an in vivo bleeding defect which is characterized by a pronounced tendency to rebleed. These data provide evidence for an important role of outside-in signalling in platelet physiology. Furthermore, they identify the integrin cytoplasmic tyrosine motif as a key mediator of beta-integrin signals and a potential target for new therapeutic agents.  相似文献   

13.
The glomerular filtration barrier in the kidney is formed in part by a specialized intercellular junction known as the slit diaphragm, which connects adjacent actin-based foot processes of kidney epithelial cells (podocytes). Mutations affecting a number of slit diaphragm proteins, including nephrin (encoded by NPHS1), lead to renal disease owing to disruption of the filtration barrier and rearrangement of the actin cytoskeleton, although the molecular basis for this is unclear. Here we show that nephrin selectively binds the Src homology 2 (SH2)/SH3 domain-containing Nck adaptor proteins, which in turn control the podocyte cytoskeleton in vivo. The cytoplasmic tail of nephrin has multiple YDxV sites that form preferred binding motifs for the Nck SH2 domain once phosphorylated by Src-family kinases. We show that this Nck-nephrin interaction is required for nephrin-dependent actin reorganization. Selective deletion of Nck from podocytes of transgenic mice results in defects in the formation of foot processes and in congenital nephrotic syndrome. Together, these findings identify a physiological signalling pathway in which nephrin is linked through phosphotyrosine-based interactions to Nck adaptors, and thus to the underlying actin cytoskeleton in podocytes. Simple and widely expressed SH2/SH3 adaptor proteins can therefore direct the formation of a specialized cellular morphology in vivo.  相似文献   

14.
Jones RB  Gordus A  Krall JA  MacBeath G 《Nature》2006,439(7073):168-174
Although epidermal growth factor receptor (EGFR; also called ErbB1) and its relatives initiate one of the most well-studied signalling networks, there is not yet a genome-wide view of even the earliest step in this pathway: recruitment of proteins to the activated receptors. Here we use protein microarrays comprising virtually every Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain encoded in the human genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of tyrosine phosphorylation on the four ErbB receptors. This involved 77,592 independent biochemical measurements and provided a quantitative protein interaction network that reveals many new interactions, including ones that fall outside of our current view of domain selectivity. By slicing through the network at different affinity thresholds, we found surprising differences between the receptors. Most notably, EGFR and ErbB2 become markedly more promiscuous as the threshold is lowered, whereas ErbB3 does not. Because EGFR and ErbB2 are overexpressed in many human cancers, our results suggest that the extent to which promiscuity changes with protein concentration may contribute to the oncogenic potential of receptor tyrosine kinases, and perhaps other signalling proteins as well.  相似文献   

15.
The Src family of protein tyrosine kinases (Src-PTKs) is important in the regulation of growth and differentiation of eukaryotic cells. The activity of Src-PTKs in cells of different types is negatively controlled by Csk, which specifically phosphorylates a conserved regulatory tyrosine residue at the carboxy-terminal tail of the Src-PTKs. Csk is mainly cytoplasmic and Src-PTKs are predominantly membrane-associated. This raises a question about the mechanism of interaction between these enzymes. Here we present Cbp--a transmembrane phosphoprotein that is ubiquitously expressed and binds specifically to the SH2 domain of Csk. Cbp is involved in the membrane localization of Csk and in the Csk-mediated inhibition of c-Src. In the plasma membrane Cbp is exclusively localized in the GM1 ganglioside-enriched detergent-insoluble membrane domain, which is important in receptor-mediated signalling. These findings reveal Cbp as a new component of the regulatory mechanism controlling the activity of membrane-associated Src-PTKs.  相似文献   

16.
Meng W  Sawasdikosol S  Burakoff SJ  Eck MJ 《Nature》1999,398(6722):84-90
Cbl is an adaptor protein that functions as a negative regulator of many signalling pathways that start from receptors at the cell surface. The evolutionarily conserved amino-terminal region of Cbl (Cbl-N) binds to phosphorylated tyrosine residues and has cell-transforming activity. Point mutations in Cbl that disrupt its recognition of phosphotyrosine also interfere with its negative regulatory function and, in the case of v-cbl, with its oncogenic potential. In T cells, Cbl-N binds to the tyrosine-phosphorylated inhibitory site of the protein tyrosine kinase ZAP-70. Here we describe the crystal structure of Cbl-N, both alone and in complex with a phosphopeptide that represents its binding site in ZAP-70. The structures show that Cbl-N is composed of three interacting domains: a four-helix bundle (4H), an EF-hand calcium-binding domain, and a divergent SH2 domain that was not recognizable from the amino-acid sequence of the protein. The calcium-bound EF hand wedges between the 4H and SH2 domains and roughly determines their relative orientation. In the ligand-occupied structure, the 4H domain packs against the SH2 domain and completes its phosphotyrosine-recognition pocket. Disruption of this binding to ZAP-70 as a result of structure-based mutations in the 4H, EF-hand and SH2 domains confirms that the three domains together form an integrated phosphoprotein-recognition module.  相似文献   

17.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

18.
Colorectal cancer results from mutations in components of the Wnt pathway that regulate beta-catenin levels. Dishevelled (Dvl or Dsh) signals downstream of Wnt receptors and stabilizes beta-catenin during cell proliferation and embryonic axis formation. Moreover, Dvl contributes to cytoskeletal reorganization during gastrulation and mitotic spindle orientation during asymmetric cell division. Dvl belongs to a family of eukaryotic signalling proteins that contain a conserved 85-residue module of unknown structure and biological function called the DIX domain. Here we show that the DIX domain mediates targeting to actin stress fibres and cytoplasmic vesicles in vivo. Neighbouring interaction sites for actin and phospholipid are identified between two helices by nuclear magnetic resonance spectroscopy (NMR). Mutation of the actin-binding motif abolishes the cytoskeletal localization of Dvl, but enhances Wnt/beta-catenin signalling and axis induction in Xenopus. By contrast, mutation of the phospholipid interaction site disrupts vesicular association of Dvl, Dvl phosphorylation, and Wnt/beta-catenin pathway activation. We propose that partitioning of Dvl into cytoskeletal and vesicular pools by the DIX domain represents a point of divergence in Wnt signalling.  相似文献   

19.
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.  相似文献   

20.
Spred is a Sprouty-related suppressor of Ras signalling   总被引:19,自引:0,他引:19  
Cellular proliferation, and differentiation of cells in response to extracellular signals, are controlled by the signal transduction pathway of Ras, Raf and MAP (mitogen-activated protein) kinase. The mechanisms that regulate this pathway are not well known. Here we describe two structurally similar tyrosine kinase substrates, Spred-1 and Spred-2. These two proteins contain a cysteine-rich domain related to Sprouty (the SPR domain) at the carboxy terminus. In Drosophila, Sprouty inhibits the signalling by receptors of fibroblast growth factor (FGF) and epidermal growth factor (EGF) by suppressing the MAP kinase pathway. Like Sprouty, Spred inhibited growth-factor-mediated activation of MAP kinase. The Ras-MAP kinase pathway is essential in the differentiation of neuronal cells and myocytes. Expression of a dominant negative form of Spred and Spred-antibody microinjection revealed that endogenous Spred regulates differentiation in these types of cells. Spred constitutively associated with Ras but did not prevent activation of Ras or membrane translocation of Raf. Instead, Spred inhibited the activation of MAP kinase by suppressing phosphorylation and activation of Raf. Spred may represent a class of proteins that modulate Ras-Raf interaction and MAP kinase signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号