首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Egli D  Rosains J  Birkhoff G  Eggan K 《Nature》2007,447(7145):679-685
Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.  相似文献   

2.
3.
4.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes   总被引:5,自引:0,他引:5  
Gu TP  Guo F  Yang H  Wu HP  Xu GF  Liu W  Xie ZG  Shi L  He X  Jin SG  Iqbal K  Shi YG  Deng Z  Szabó PE  Pfeifer GP  Li J  Xu GL 《Nature》2011,477(7366):606-610
Sperm and eggs carry distinctive epigenetic modifications that are adjusted by reprogramming after fertilization. The paternal genome in a zygote undergoes active DNA demethylation before the first mitosis. The biological significance and mechanisms of this paternal epigenome remodelling have remained unclear. Here we report that, within mouse zygotes, oxidation of 5-methylcytosine (5mC) occurs on the paternal genome, changing 5mC into 5-hydroxymethylcytosine (5hmC). Furthermore, we demonstrate that the dioxygenase Tet3 (ref. 5) is enriched specifically in the male pronucleus. In Tet3-deficient zygotes from conditional knockout mice, paternal-genome conversion of 5mC into 5hmC fails to occur and the level of 5mC remains constant. Deficiency of Tet3 also impedes the demethylation process of the paternal Oct4 and Nanog genes and delays the subsequent activation of a paternally derived Oct4 transgene in early embryos. Female mice depleted of Tet3 in the germ line show severely reduced fecundity and their heterozygous mutant offspring lacking maternal Tet3 suffer an increased incidence of developmental failure. Oocytes lacking Tet3 also seem to have a reduced ability to reprogram the injected nuclei from somatic cells. Therefore, Tet3-mediated DNA hydroxylation is involved in epigenetic reprogramming of the zygotic paternal DNA following natural fertilization and may also contribute to somatic cell nuclear reprogramming during animal cloning.  相似文献   

5.
In the past ten years, great breakthroughs have been achieved in the nuclear reprogramming area. It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state, which indicates that differentiated cell fate is not irreversible. Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing reprogramming of differentiated somatic cell genome. In the present review, we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose. Supported by the National High Technology Research and Development Program of China (Grant No. 2005AA210930)  相似文献   

6.
Although the somatic cell nuclear transfer(SCNT) technique has been used extensively for cloning and generating transgenic pigs,the cloning efficiency is still very low.It has been proposed that the low efficiency of this technique is the result of incomplete epigenetic reprogramming and abnormal gene expression during early embryonic development.In this study,we investigate the effect of Scriptaid,a low-toxicity histone deacetylase inhibitor,on the developmental competence of porcine SCNT embryos.We found that treating SCNT embryos with 500 nmol/L Scriptaid for 15 h after activation significantly enhanced the blastocyst formation rate(27.7%) compared with the untreated group(control)(12.2%,P<0.05).Using an immunofluorescence technique to measure the average fluorescence intensity,we also found that treating SCNT embryos with Scriptaid increased the level of histone acetylation on histone H3 at lysine 14(acH3K14).Furthermore,treating embryos with Scriptaid increased the expression level of three genes that play important roles during embryonic development(Oct4,Klf4 at the blastocyst stage and Nanog at the 4-cell stage).Moreover,the expression level of the apoptosis-related gene Caspase-3 was significantly lower in the Scriptaid-treated SCNT embryos compared with the control SCNT embryos at the 4-cell and blastocyst stages.In conclusion,these results indicate that Scriptaid treatment improves the development and nuclear reprogramming of porcine SCNT embryos.  相似文献   

7.
目前已有多种动物被成功克隆,但存在着诸多未知因素,使体细胞核移植重构胚发育至囊胚阶段的比例过低,克隆动物存在早衰等异常现象.该文围绕这产生这些现象的根本原因、高度分化的体细胞核移入卵质后所发生的分子事件以及其影响因素如体细胞的来源和培养代数、细胞周期、核质相互作用、细胞核再程序化、线粒体等方面对体细胞核移植重构胚发育的影响等进行综述.  相似文献   

8.
Hochedlinger K  Jaenisch R 《Nature》2006,441(7097):1061-1067
The cloning of mammals from differentiated donor cells has refuted the old dogma that development is an irreversible process. It has demonstrated that the oocyte can reprogramme an adult nucleus into an embryonic state that can direct development of a new organism. The prospect of deriving patient-specific embryonic stem cells by nuclear transfer underscores the potential use of this technology in regenerative medicine. The future challenge will be to study alternatives to nuclear transfer in order to recapitulate reprogramming in a Petri dish without the use of oocytes.  相似文献   

9.
10.
11.
Chromatin-modifying enzymes as modulators of reprogramming   总被引:2,自引:0,他引:2  
  相似文献   

12.
In somatic cell nuclear transfer (SCNT) technologies, the donor cell's nuclei need to be epigenetically reprogrsmmed for embryonic development. The incomplete reprogramming of donor cell nuclei has been Implicated as s primary reason for the low efficiency of SCNT. DNA methylstion is s major epigenetic modification of the genome that regulates crucial aspects of genome function, including establishment of genomic imprinting. In order to make sure whether the DNA methylstion reprogramming is efficient in SCNT animals, we analyzed the DNA methylstion status of two imprinting genes, H19 and Xist, in lungs of deceased SCNT bovines that died within 48 h of birth using bisulfite sequencing analysis. Our findings demonstrated that cloned bovines showed significantly lower DNA methylstion of H19 than controls (P〈0.05), and three tested CpGs sites (1, 2, 3) exhibited unmethylstion in one cloned bovine (9C3); however, Xist showed similar DNA methylation levels between clones and controis, and both showed hypermethylstion (96.11% and 86.67%).  相似文献   

13.
Dogs cloned from adult somatic cells   总被引:2,自引:0,他引:2  
Lee BC  Kim MK  Jang G  Oh HJ  Yuda F  Kim HJ  Hossein MS  Shamim MH  Kim JJ  Kang SK  Schatten G  Hwang WS 《Nature》2005,436(7051):641
Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.  相似文献   

14.
哺乳动物体细胞克隆技术的成功是生物高新技术的重大突破,具有划时代里程碑的作用.在分析哺乳动物体细胞克隆技术的基本环节及其研究现状的基础上,对其产生的意义和存在的问题作了综合评述,并对其发展前景作了展望。  相似文献   

15.
Parker HG  Kruglyak L  Ostrander EA 《Nature》2006,440(7081):E1-E2
In August 2005, Lee et al. reported the first cloning of a domestic dog from adult somatic cells. This putative dog clone was the result of somatic-cell nuclear transfer from a fibroblast cell of a three-year-old male Afghan hound into a donor oocyte provided by a dog of mixed breed. In light of recent concerns regarding the creation of cloned human cell lines from the same institution, we have undertaken an independent test to determine the validity of the claims made by Lee et al..  相似文献   

16.
In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aberrant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 〈 0.05) and two genes had no significant variations (p 〉 0.05). Whereas 13 genes had significantly decreased expression (p 〈 0.05) in aberrant clones, five genes showed no significant differences between controls and clones (p 〉 0.05), and only one gene had higher expression level in clones (p 〈 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.  相似文献   

17.
Apoptosis plays an important role in preimplantation embryonic development. Investigating mechanisms of apoptosis can provide useful information for obtaining high-quality embryos and help to improve cloning efficiency. Here, we investigated the incidence of blastomere apoptosis in transgenic blastocysts generated by somatic cell nuclear transfer (SCNT) and recloning using a terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. Transgenic recloned embryos were the second generation SCNT embryos derived from the somatic cells of a transgenic SCNT calf. The blastocyst rate of transgenic SCNT embryos was lower than that of nontransgenic SCNT embryos. The incidence of apoptosis in transgenic SCNT embryos was higher than that of nontransgenic SCNT embryos. The blastocyst rate and the incidence of apoptosis in transgenic recloned embryos were similar to nontransgenic SCNT embryos. The process of donor cell transfection and drug selection may decrease the developmental capacity of transgenic SCNT embryos. Serial cloning did not influence the developmental capacity of transgenic recloned embryos.  相似文献   

18.
Pregnancy: a cloned horse born to its dam twin   总被引:1,自引:0,他引:1  
Several animal species, including sheep, mice, cattle, goats, rabbits, cats, pigs and, more recently, mules have been reproduced by somatic cell cloning, with the offspring being a genetic copy of the animal donor of the nuclear material used for transfer into an enucleated oocyte. Here we use this technology to clone an adult horse and show that it is possible to establish a viable, full-term pregnancy in which the surrogate mother is also the nuclear donor. The cloned offspring is therefore genetically identical to the mare who carried it, challenging the idea that maternal immunological recognition of fetal antigens influences the well-being of the fetus and the outcome of the pregnancy.  相似文献   

19.
Reconstruction of human embryos derived from somatic cells   总被引:1,自引:0,他引:1  
Reconstruction of human nuclear transfer embryos is a necessary step of therapeutic cloning. In this study we injected somatic cell nuclei into M Ⅱ oocytes and activated reconstructed oocytes with calcium ionophore A23187 (CaA) and 6-dimethylaminopurine (6-DMAP). After oocyteactivation and 2PN formation, we removed the female PN.By using this method, we avoided the application of DNA fluorescent stain and ultraviolet light for oocyte enucleation,and over elimination of ooplasm was also mitigated. Some reconstructed embryos developed into the blastocyst stage in vitro.  相似文献   

20.
Cloned pigs produced by nuclear transfer from adult somatic cells   总被引:134,自引:0,他引:134  
Since the first report of live mammals produced by nuclear transfer from a cultured differentiated cell population in 1995 (ref. 1), successful development has been obtained in sheep, cattle, mice and goats using a variety of somatic cell types as nuclear donors. The methodology used for embryo reconstruction in each of these species is essentially similar: diploid donor nuclei have been transplanted into enucleated MII oocytes that are activated on, or after transfer. In sheep and goat pre-activated oocytes have also proved successful as cytoplast recipients. The reconstructed embryos are then cultured and selected embryos transferred to surrogate recipients for development to term. In pigs, nuclear transfer has been significantly less successful; a single piglet was reported after transfer of a blastomere nucleus from a four-cell embryo to an enucleated oocyte; however, no live offspring were obtained in studies using somatic cells such as diploid or mitotic fetal fibroblasts as nuclear donors. The development of embryos reconstructed by nuclear transfer is dependent upon a range of factors. Here we investigate some of these factors and report the successful production of cloned piglets from a cultured adult somatic cell population using a new nuclear transfer procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号