首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
以黄瓜为试验对象,研究了不同镉浓度(0 mg·L-1、0.5 mg·L-1,1 mg·L-1、5 mg·L-1、10 mg·L-1、20mg·L-1、50 mg·L-1和100 mg·L-1)对黄瓜幼苗生长的影响.结果表明:不同浓度的镉对黄瓜种子的萌发几乎没有影响;低浓度镐对幼苗的初期生长有一定的刺激作用,当镉浓度大于等于5 mg·L-1对生物量有较明显的抑制作用;1mg·L-1镉浓度对株高有极显著的刺激作用,随着浓度的增加这种刺激作用减弱,而高浓度的镉对株高产生显著的抑制作用;低浓度的镉对根生长没有显著作用,高浓度的镉对根产生显著的抑制作用;对地上部分和地下部分产生毒害作用的镉浓度均处于5-10mg·L-1之间;高浓度镉处理下,根较茎更敏感;幼苗叶中叶绿素a和叶绿素b的含量随镉浓度的升高先降低再升高,最后又降低;黄瓜叶和茎的丙二醛(MDA)含量变化趋势基本一致,叶较茎对镉胁迫更敏感;不同处理组之间脯氨酸含量变化规律不明显.  相似文献   

2.
对XAD-1180型大孔吸附树脂对羟基钴胺素的吸附与洗脱性能进行了研究.采用紫外分光光度计检测羟钴胺素的浓度,确定出树脂对羟钴胺素的静态吸附量、吸附率、洗脱率以及动态吸附量和洗脱率.结果显示,优化的吸附条件为初始浓度1000mg·L-1,温度30℃,用70%丙酮-水溶液做洗脱剂可达到97.5%的洗脱率.静态饱和吸附量为261.3mg·g-1干树脂.动态泄露吸附量为49.8mg·g-1干树脂,洗脱率为97.1%,洗脱液总浓度为8636.4mg·L-1,可直接用来结晶.  相似文献   

3.
研究了pH为 5 0的醋酸 醋酸钠介质中存在大量锌时 ,镉和钴在丁二酮肟 柠檬酸钠 氯化铵体系中的络合物吸附波 .结果表明 ,镉、钴峰电位分别为 - 0 79V和 - 0 93V ,线性范围分别为 0 0 0 5~ 5mg·L- 1 和 0 0 0 0 1~ 0 1mg·L- 1 ,检测限分别为 4 0× 1 0 - 8mol·L- 1 和 8 1× 1 0 - 1 0 mol·L- 1 .该方法具有不经预处理可直接用于锌电解液中微量镉、钴同时测定的优点 .分析了电活性络合物的组成、极谱波性质和电极过程机理 .镉、钴与丁二酮肟 (DMG)的络合比均为 1∶2 ,Cd(DMG) 2 和Co(DMG) 2 络合物均表现出强的吸附特性 ,且前者吸附性更强 ,峰电流主要由络合物中心离子Cd(Ⅱ )和Co(Ⅱ )还原为Cd和Co产生 ,极谱波均为络合物吸附波  相似文献   

4.
竹炭对水溶液中Cd(Ⅱ)的吸附研究   总被引:5,自引:1,他引:4  
研究了竹炭对溶液中Cd (Ⅱ) 的吸附行为.考察了酸处理、pH值、竹碳与溶液的接触时间、投料量、吸附温度和Cd (Ⅱ)的初始浓度对吸附的影响.结果表明竹炭对镉离子的吸附是放热过程,并且符合Freundlich吸附模型,在初始浓度为15 mg·L-1、最佳酸度及287K条件下,未经处理的竹炭饱和吸附量达到11.0 mg·g-1,增加竹碳的用量,镉离子吸附率可达99%以上.  相似文献   

5.
化工废水经过生化处理后,仍含有成分复杂的有机污染物,其毒性一般较大,需要进行深度处理.目前单一的处理方法效果欠佳,本文在优化Fenton氧化处理条件的基础上,考察了系列磁性超高交联树脂对Fenton氧化出水的处理效果.结果表明,对于化学需氧量(COD)为145.5mg·L-1的化工废水生化出水,在Fenton氧化优选条件(4mmol·L-1 FeSO4、8mmol·L-1 H2O2、pH为5、反应时间为90min)处理后,其出水COD去除率达62%,但处理后的出水中仍然含有较多的溶解性有机物质.具有一定含量阴离子交换基团的超高交联树脂对Fenton氧化出水具有较好的处理效果,这是由于Fenton氧化过程所产生小分子有机酸,易于与树脂发生静电作用引起的.优选出的GMA-5树脂(强碱交换量0.89mmol·g-1,比表面积668m2·g-1),对UV254去除率达53%,COD去除率达59%;树脂再生后可重复使用,稳定性较好.组合工艺研究表明Fenton氧化与磁性树脂吸附组合方法能够有效对化工废水进行深度处理,其组合工艺对UV254和COD去除率均达75%以上,处理后的出水COD低于40mg·L-1.  相似文献   

6.
以仲壬基苯氧基乙酸(CA-100)为萃取剂、苯乙烯-二乙烯基苯大孔吸附树脂(HZ802)为载体制备了CA-100/HZ802浸渍树脂,并对其进行了红外光谱和热重表征.研究了该浸渍树脂在硫酸溶液中吸附Ga(III)的性能.结果表明:在298K时,浸渍树脂对Ga(III)的吸附最佳pH值为3.2,饱和吸附容量为18.37mg·g-1,在含有Ga(III),Zn(II),Cu(II),Al(III)的混合模拟体系中,浸渍树脂可以对Ga(III)进行选择性地吸附.动态实验表明,0.5mol·L-1的硫酸溶液可以将吸附在浸渍树脂上的Ga(III)洗脱下来.  相似文献   

7.
重金属铅、镉对方斑东风螺幼体的急性毒性试验   总被引:1,自引:0,他引:1  
在水温28.4-30.4℃的条件下,分别研究了重金属铅、镉对方斑东风螺幼体的急性毒性影响.试验结果表明,铅对方斑东风螺幼体48h、72h、96h的LC50(半致死浓度)分别为19.543、4.571、1.071 mg·L-1;镉对方斑东风螺幼体48h、72h、96h的LC50(半致死浓度)分别为2.960、0.612、0.198 mg·L-1.估算得到铅、镉对方斑东风螺幼体的安全浓度分别为0.107 mg·L-1、0.020 mg·L-1.  相似文献   

8.
西咪替丁的线性扫描极谱法测定   总被引:1,自引:0,他引:1  
用线性扫描极谱法研究了西咪替丁的电化学行为.在0.16 mol·L-1Na2HPO4-KH2PO4缓冲溶液(pH6.65)中,西咪替丁于-1.903V(vs.SCE)处产生一灵敏的吸附波,其一次线性扫描极谱峰电流与西咪替丁浓度在4.0 mg·L-1-200.0 mg·L-1范围内呈良好的线性关系,相关系数r=0.9935(n=10),检出限为2.0 mg·L-1.对80.0 mg·L-1西咪替丁溶液进行6次平行试验,RSD为0.86%,回收率在94.7%-99.4%之间.本方法操作简便、准确、结果重现性好,可用于胶囊中西咪替丁含量的测定.  相似文献   

9.
采用静态吸附分段试验方法,研究了以牛仔布印染污泥为原料制备的吸附剂处理牛仔布加工废水的可行性,探讨了吸附处理的影响的工艺因素.结果表明:在吸附剂投加量为10 g·L-1、体系pH值为5、混合反应时间120 min的条件下,可将印染废水的COD从614.68mg·L-1降低到116.24 mg·L-1,颜色变得清澈透明,达到二级排放标准;吸附-催化氧化联合流程处理,COD从614.68 mg·L-1降低到36.92 mg·L-1,达到一级排放标准.  相似文献   

10.
研究了D30 1 (叔胺 )和D31 2 (伯胺 ) 2种弱碱性阴离子交换树脂对MoS2 -4 的吸附和解吸行为 .结果表明 ,D30 1树脂对MoS2 -4 有较好的吸附效果 ,但用 0 .5mol·L- 1 的NaOH溶液解吸时解吸率仅为 2 9.6 % ;D31 2树脂对MoS2 -4 的吸附效果较差 ,但用 0 .5mol·L- 1 的NaOH溶液解吸时解吸率可达 90 %以上 ;此外 ,将二者应用于基于MoS2 -4 同WO2 -4 性质差异的离子交换除钼工艺尚存在一定的问题  相似文献   

11.
实验采用紫外分光光度法,以聚丙烯树脂和聚丙烯酰胺树脂作为吸附剂,对Pb2+进行吸附研究,考察吸附温度、吸附时间、金属离子的浓度、pH 值、吸附剂用量等影响因素对吸附效果的影响,从而确定最佳的吸附条件. 结果表明:吸附温度为20 ℃,吸附时间为20 min,吸附剂树脂用量为20 g·g-1,pH 值为4.0,Pb2+溶液浓度为300 mg·L-1时,吸附效果最佳.  相似文献   

12.
利用合成纳米锰钾矿去除模拟废水中Cd(Ⅱ),研究不同去除反应条件对废水中镉离子去除率的影响.结果表明:合成纳米锰钾矿对水溶液中Cd2+的去除平衡时间约为2h;在Cd2+质量浓度为50mg·L-1、溶液初始pH=6.50、反应温度25℃、处理剂粒径96~120μm、每升模拟废水中投加2g合成纳米锰钾矿时,平衡后Cd2+去除率为90.6%.当Cd2+质量浓度不高于300 mg·L-1时,吸附等温线近似符合Langmuir模型,合成纳米锰钾矿最大理论吸附量为120.5mg·g-1.纳米锰钾矿对于Cd2+的去除是表面配位吸附、静电吸附、离子交换三种模式共同作用的结果.  相似文献   

13.
利用合成纳米锰钾矿去除模拟废水中Cd (Ⅱ),研究不同去除反应条件对废水中镉离子去除率的影响.结果表明:合成纳米锰钾矿对水溶液中Cd2+的去除平衡时间约为2 h;在Cd2+质量浓度为50 mg · L-1、溶液初始pH=6.50、反应温度25℃、处理剂粒径96~120μm、每升模拟废水中投加2g合成纳米锰钾矿时,平衡后Cd2+去除率为90.6%.当Cd2+质量浓度不高于300 mg·L-1时,吸附等温线近似符合Langmuir模型,合成纳米锰钾矿最大理论吸附量为120.5mg·g-1.纳米锰钾矿对于Cd2+的去除是表面配位吸附、静电吸附、离子交换三种模式共同作用的结果.  相似文献   

14.
用线性扫描极谱法和循环伏安法研究替米沙坦在0.25mol·L-1Na2HPO4-KH2PO4缓冲溶液(pH7.56)中的电化学行为,替米沙坦于-0.449V(vs.SCE)处产生一灵敏的吸附波,在替米沙坦浓度为0.2mg·L-1~20.0 mg·L-1范围内,其一次微分线性扫描峰电流与替米沙坦浓度呈良好的线性关系,相关系数r=0.99523(n=10),检出限为0.1 mg·L-1。对20.0mg·L-1替米沙坦溶液进行6次平行试验,RSD为0.76%,回收率在98.8%~105.9%之间。方法可用于其在片剂中含量的测定。  相似文献   

15.
美洲商陆快速繁殖实验体系的建立   总被引:1,自引:0,他引:1  
以美洲商陆(Phytolacca americana L.pokeweed)的茎尖为外植体,建立了美洲商陆的快速繁殖实验体系.茎尖增殖最佳培养基为 MS 0.05mg·L-16-苄基腺嘌呤(6-BA) 0.1mg·L-1赤霉素(GA3) 300mg·L-1水解乳蛋白(LH) 20g·L-1蔗糖 7.0g·L-1琼脂,pH5.8.诱导根的最佳培养基为1/2MS 0.4mg·L-1吲哚丁酸(IBA) 0.1mg·L-1GA3 300mg·L-1LH 15g·L-1蔗糖 7.0g·L-1琼脂,pH5.8.  相似文献   

16.
建立了气相色谱质谱法(GC-MS)快速检测酒类产品中邻苯二甲酸酯的方法.采用正己烷-甲基叔丁基醚(1∶1,v/v)作为萃取剂,Cleanert PEP Plus萃取小柱净化,GC-MS检测,外标法定量.利用该方法研究了17种邻苯二甲酸酯溶液在0.510 mg·L-1浓度范围的标准曲线,线性关系良好.利用优化后的方法测定了5个酒类样品中邻苯二甲酸酯的含量,在D类样品中分别添加浓度1 mg·L-1和2 mg·L-1的邻苯二甲酸酯混合标准工作液,回收率为78.2%10 mg·L-1浓度范围的标准曲线,线性关系良好.利用优化后的方法测定了5个酒类样品中邻苯二甲酸酯的含量,在D类样品中分别添加浓度1 mg·L-1和2 mg·L-1的邻苯二甲酸酯混合标准工作液,回收率为78.2%112.8%,相对标准偏差小于12.5%.  相似文献   

17.
目的:优化大孔吸附树脂分离纯化荒漠肉苁蓉总苷的工艺条件.方法:通过比较6种不同型号大孔吸附树脂的吸附、解吸能力及回收率,优选出较佳的树脂.对优选的较佳树脂纯化荒漠肉苁蓉总苷的工艺,采用L_9(3~4)正交设计优化.结果:D-101为纯化的较佳树脂,上样液浓度2.0mg·mL~(-1),上样液流速2 mL·min~(-1),洗脱液体积6 BV为较佳吸附条件.该条件下纯化后总苷含量达64.38%,为纯化前的28.85倍.结论:D-101树脂对荒漠肉苁蓉总苷纯化效果良好,该工艺稳定,可行性高.  相似文献   

18.
通过静态吸附试验,研究一种由超分子受体化合物磺化硫杂杯芳烃(TCAS)与树脂结合的产物-新型TCAS吸附树脂对重金属Cu2+的吸附去除性能,并初步探讨了吸附机理。试验研究结果表明:当温度为20℃,0.5gTCAS吸附树脂对10 mL浓度为5.0 mg.L-1的Cu2+溶液吸附120 min时,Cu2+的去除率可达到99%以上,pH值对TCAS吸附树脂吸附重金属的影响不大,吸附在TCAS吸附树脂上的Cu2+可洗脱回收,TCAS吸附树脂也可再生利用。  相似文献   

19.
为制备新型材料用于快速分离富集水中的微量铜元素,以磁性硅胶微球为核,N-(4-乙烯基)-苯甲氨二乙酸为单体,二乙烯基苯为交联剂,采用热引发聚合制备了磁性聚苯乙烯-苯甲氨二乙酸复合材料.通过傅里叶红外光谱、透射电镜和热重分析对复合材料的组成和结构特性进行了表征,并用Cu~(2+)研究了其富集性能和相关吸附动力学.结果表明:具有官能团的聚合物成功地包覆在了Fe_3O_4纳米粒子表面.10 mg吸附剂在pH值为5的10 m L Cu~(2+)溶液(25 mg·L-1)中,15 min达到吸附平衡且吸附率可达93%.Cu~(2+)在EDTA溶液(0.1 mol·L-1)中15 min可快速洗脱,洗脱率达95%.Cu~(2+)在材料上的吸附行为与准二级动力学模型拟合较好.  相似文献   

20.
亚胺基二乙酸树脂对锰(Ⅱ)的吸附性能及其机理   总被引:1,自引:0,他引:1  
研究了亚胺基二乙酸树脂对锰(Ⅱ)的吸附行为及其机理.结果表明,在pH=5.6时树脂对锰的吸附效果最佳.298K时静态饱和吸附容量为106.7mg/g,表观吸附速率常数为1.315×10-5s-1,表观吸附活化能是35.6kJ/mol,树脂功能基与锰(Ⅱ)的配位摩尔比为2:1.化学分析及红外光谱表明树脂功能基上的氧原子与Mn2 发生配位键合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号