首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于二叉树的SVM多类分类算法研究   总被引:3,自引:0,他引:3  
支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.介绍了基于二叉树的SVM多类分类算法,通过对其原理和实现方法的分析,对这些方法的优缺点进行了归纳和总结,给出了进一步的研究方向.  相似文献   

2.
卫星云图云分类的一种综合优化聚类方法   总被引:2,自引:0,他引:2  
为了改进和提高目前卫星云图云分类中客观性、定量性和自动化程度的不足,运用遗传算法(GA)全局寻优、模糊C均值聚类(FCM)局部寻优、模糊减法聚类(FSC)客观估算聚类数等优势互补的思想和途径,进行卫星云图的云分类判别。试验结果表明,综合优化方法(FSC-GA-FCM)的云分类效果明显优于单一的FCM和GA算法,可有效弥补FCM和GA算法在云分类中存在的不足,可运用于实况云图的云分类客观、自动判别。  相似文献   

3.
给出了一种基于编码二叉树的支持向量机(SVM,Support Vector Machine)的多类分类算法.首先,定义了一种构造编码二叉树的方法,在此基础上合理的使用每个训练样本对应的编码来对多类样本进行划分,使之转化为两类分类问题.由算法的实现过程可以看出,本算法可以大大减少子分类器的构造个数,从而简化了多类SVM分类算法.  相似文献   

4.
针对遥感影像分类过程中混合像元难判别的问题, 提出一种基于Gustafson-Kessel模糊聚类算法的支持向量机(SVM)分类模型. 以Gustafson-Kessel算法优选训练样本方式提高支持向量机的分类性能. 为验证其有效性, 将该模型应用于森林覆盖类别分类, 并与标准支持向量机模型分类结果对比. 实验结果表明, 该方法能提高支持向量机对混合像元划分的精度.  相似文献   

5.
支持向量机(SVM)是建立在统计学理论基础上的一种机器学习方法,用于解决二类分类问题,如何有效地将其推广到多类分类问题是一个正在研究的课题.总结了现有的主要的支持向量机多类分类算法,并在1-a-1SVM分类算法基础上提出一种二次分类的方法.改良了惩罚因子,提高了不易分的类别之间的可分程度.通过对超光谱图像进行分类实验,结果表明该方法具有较高的分类精度.  相似文献   

6.
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持...  相似文献   

7.
单实例多标签分类是指一个样本拥有多个标签的分类问题,对此提出了一种基于半模糊核聚类和模糊支持向量机的多标签分类算法.该算法采用一对一分解策略将多类多标签数据集分解为多个两类双标签数据子集,在每个子集上训练两类双标签模糊支持向量机.为提高分类器的性能引入了半模糊核聚类技术.实验结果表明,与现有的一些算法相比新算法具有其优...  相似文献   

8.
多类SVM分类算法的研究   总被引:3,自引:0,他引:3  
支持向量机(Support Vector Machine,SVM)是上世纪九十年代提出的一种基于小样本的新的统计学习方法,较好地解决了非线性、高维数、局部极小点等实际问题.文中分析了SVM基础理论并总结了目前存在的基于支持向量机的主要分类方法,包括"一对多"方法、"一对一"方法、决策有向无环图方法、基于二又树的多类分类方法和其它方法,并对各自的优缺点及性能做了比较.  相似文献   

9.
模糊C-均值聚类(FCM)算法是数据预处理中常用的一种方法,但用这种方法进行数据聚类,各类别边界信息间往往存在干扰,模型精度不能得到很好改善。本文采用一种改进的线性判别分析(LDA)方法,用于扩大样本类别间的距离,使聚类更为精确。将FCM算法与改进的LDA算法结合提取样本特征,然后通过多模型融入到SVM算法中。通过对双酚A软测量建模的仿真研究表明该方法具有较好的效果。  相似文献   

10.
一种新的多类SVM方法及其在文本分类中的应用   总被引:2,自引:6,他引:2  
提出一种将SVM扩展到多类文本分类问题的新方法,此方法有增量模式及批模式两种应用途径。其中,批模式提供了一种其他多类SVM替代方法;而增量模式在重复利用原有模型的基础上将新增类别的知识信息以增量方式更新到分类系统,整个分类器不需要全部重新学习,需要的计算量较小。实验表明增量方法大大减少新类增加时分类器更新所需要的学习步骤和时间;两种模式的分类效果与其他方法相当。  相似文献   

11.
基于逆云模型的支持向量机多类分类方法   总被引:1,自引:0,他引:1  
针对支持向量机在进行多类识别中存在的拒分问题,结合能够描述客观世界不确定性的模糊理论,提出利用逆云模型描述样本对各类逆云隶属度的多类分类方法.实验表明,该方法能够有效地消除样本拒分现象,提高识别率.  相似文献   

12.
针对现有企业经营状况分析方法普遍存在的过于依赖评价者主观经验的不足,提出了企业经营状况分析的多类SVM分类方法。该方法首先利用动态聚类算法获得样本的类别信息,并利用主成分分析方法对样本数据进行降维,进而利用多类SVM模型实现企业经营状况的评估。由于整个评估方法完全建立在对历史数据分析的基础上,因而较为有效地克服了现有方法的主观性。给出了应用该方法的具体步骤,实际算例验证了该方法的可行性和有效性。  相似文献   

13.
基于支持向量机的多类形状识别系统   总被引:9,自引:0,他引:9  
支持向量机是一种能在训练样本数很少的情况下达到很好分类推广能力的学习算法,文中研究了支持向量机的分类机理,并将其应用于形状识别中,利用一对一判别策略构建了多类形状识别系统,实验中以交通标志图像为实验对象进行分类,结果表明该方法的泛化能力优于一般的识别方法。  相似文献   

14.
相关反馈技术是提高图像检索性能的一个重要手段,本文提出了一种新的基于多类SVM的图像相关反馈检索方法,检索结果表明多类SVM方法在检索性能上具有较其他检索方法更高的检索准确性,并且其检索的密集度较传统SVM检索方法更优.  相似文献   

15.
16.
LDA可以实现大量数据集合中潜在主题的挖掘与文本信息的分类,模型假设,如果文档与某主题相关,那么文档中的所有单词都与该主题相关.然而,在面对实际环境中大规模的数据,这会导致主题范围的扩大,不能对主题单词的潜在语义进行准确定位,限制了模型的鲁棒性和有效性.本文针对LDA的这一弊端提出了新的文档主题分类算法gLDA,该模型通过增加主题类别分布参数确定主题的产生范围,提高分类的准确性.Reuters-21578数据集与复旦大学文本语料库中的数据结果证明,相对于传统的主题分类模型,该模型的分类效果得到了一定程度的提高.  相似文献   

17.
为降低训练分类器的运算复杂度,并解决支持向量机(SVM)对多类分类问题没有特别有效解决方法的问 题。提出了一种基于一类支持向量机的多分类贝叶斯算法,证明了基于径向基核函数的一类SVM的分类函数归 一化为密度函数,并将所得的概率密度函数用于构造二分类及多分类贝叶斯分类器。仿真实验将提出的多分类贝 叶斯算法应用于多类通信信号调制识别,结果表明:该算法的分类准确率不低于传统SVM多分类器,而在多类属、 每类训练样本数目较大的情况下训练所需的运算量和存储量仅是传统SVM多分类算法的0.5%大大减小了核 矩阵规模和  相似文献   

18.
为了实现对大量的网络信息的正确分类以便使用户迅速获取所需信息,提出一种新的网页内容分类算法,该算法将遗传算法(GA)与支持向量机(SVM)结合起来,利用遗传算法良好的寻优能力优化SVM的分类性能。在由新闻网页文本构成的数据集上的仿真实验结果表明,GA和SVM融合的算法能够有效提高SVM的分类性能,新算法的分类正确率相比基本的SVM有非常显著的提高。由此证明,提出的基于GA的SVM改进算法是有效的,能够用于对大量网络信息的分类问题中。  相似文献   

19.
通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集,用数据集表面的点的近邻样本与过该点的切平面之间的关系寻找边界点;对于多分类数据集,利用贝叶斯后验概率来寻找边界重复的点,以此更快达到提取边界点的目的。由此可以粗略筛选出边界点。为去除不重要的边界点,降低分类误差,通过构造最优超平面和支持向量机对边界点赋予权重,并设置阈值去除不重要的边界点,由此达到用较少的边界点准确分类数据的目的。通过100个测试样本进行分类测试并计算其分类准确率,验证了此分类方法的可行性。  相似文献   

20.
针对多媒体信息中的音频信号,提出一种基于线性判别分析(LDA)与极限学习机(ELM)的分类方法.首先,使用傅里叶变换等方法从每一段音频中提取特征,并将它们按比例组成一个高维向量;其次,应用LDA对高维向量进行降维,使其成为用于分类的最优特征,作为ELM的训练和测试样本;最后,分别采用ELM,SVM,BP分类器对4种音频信号进行分类,并进行性能对比与分析.实验表明:提出的算法对于较难分的类也具有较好的分类效果,平均正确率为90%,同时运算速度比SVM快一千多倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号