首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
跳频信号参数估计是跳频信号截获、干扰的前提,而传统Cohen类时频分析方法存在核函数选择的瓶颈.结合匹配追踪和智能计算的思想,将多峰函数粒子群优化算法引入跳频信号时频分析领域.在分析粒子适应度和粒子间距2个影响粒子搜索行为的关键因素的基础上,提出了基于改进的适应度-距离比测度的多峰函数粒子群优化算法,并应用于跳频分量自适应选取.该方法不需要跳频信号的任何先验知识和粒子群小生境参数的人为设置.理论分析和仿真结果表明,与基于环形拓扑结构、单一共享适应度信息的粒子群优化算法相比,算法成功率和参数估计精度进一步改善,该方法的邻域搜索机制和跳频分量选取具有可行性和有效性.  相似文献   

2.
基于独立分量分析的混叠跳频信号分离算法   总被引:3,自引:0,他引:3  
为解决混叠跳频信号的分离问题,在深入研究独立分量分析(ICA:Independent Component Analysis)理论基础上,结合跳频通信的特点,提出了基于独立分量分析的混叠跳频信号分离算法,实现了对混叠跳频信号的盲分离.该算法将基于负熵最大化的FastICA算法应用到混叠跳频信号分离中.通过仿真实验表明,该算法能成功地排除乘性噪声干扰,完成对混叠跳频信号的分离.虽然分离信号的幅度、相位等参数较源信号发生了变化,但并不影响后续工作.这一过程在未知任何先验参数的条件下完成,并取得了较好的分离效果,为跳频通信信号的分离工作提供了新思路.  相似文献   

3.
针对粒子群优化算法随维数增大群体多样性相对减小而早熟收敛的问题,在对和谐搜索算法进行适应性改进的基础上,将其引入粒子群算法中,提出一种动态和谐搜索混合粒子群优化算法(DHSPSO).该方法使得粒子在搜索初期更具遍历性,降低算法对初始值的敏感性,并通过和谐搜索算法搜索的随机性和优胜劣汰机制改善粒子群的多样性,使得算法具有更快的收敛速度与更好的全局搜索能力.以多个标准测试函数优化进行仿真测试,结果表明,DHSPSO算法在进行高维优化问题时,在寻优速度、精度和成功率等方面均显示出良好的优化效果.  相似文献   

4.
提出一种有效的基于改进的粒子群算法的盲源分离算法.首先引入进化速度和聚集强度来更新粒子群算法中的动态惯性权重w,然后定义基于改进PSO的独立分量分析算法的适应性函数,最后给出算法的具体步骤.实验结果表明,改进的ICA算法可以快速有效地得到BSS的最优解.  相似文献   

5.
针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化(sCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的简化粒子群优化(CsCFPSO)算法.该算法利用分段线性混沌映射(PWLCM)的遍历性和类随机性来完成混沌搜索,从而加快sCFPSO算法跳出局部极值点而继续优化.经过6个经典测试函数对该算法进行实验,结果表明其对于粒子群优化具有很好的使用价值,它可以准确地消去局部极值,确保收敛速度和精度,该算法是通过缩小种群数和进化代数来实现的.  相似文献   

6.
在分析独立分量分析算法的基础上,给出了一种基于粒子群优化的独立分量分析算法。该算法以互信息量最小化为目标函数,通过对粒子群位置矢量和速度矢量更新的改进,得到全局最优值,从而得到分离矩阵。仿真实验表明,基于粒子群优化的独立分量分析算法是一种非常有效的盲源分离算法。  相似文献   

7.
将基于反馈学习的粒子群 (Feedback Learning Particle Swarm Optimization,FLPSO) 算法引入极值搜索控制中,并且应用经典跟踪参考信号的方法,进一步改善极值搜索控制的性能.仿真结果显示,算法使系统控制输出平稳,并且系统性能输出快速渐进收敛到最优值,改善了基于格拉姆矩阵设计的极值搜索控制算法中存在的输出震荡问题.  相似文献   

8.
针对当前跳频信号盲分离算法计算量大,精确度不高的问题,结合变速跳频信号采用不断加快的跳速和“跳速多变”的策略,提出了一种利用信源间的独立性解决变速跳频信号盲分离问题的方法。同时,采用负熵最大化寻优算法加快了传统独立分量分离算法运算速度。通过仿真实验与处理实际数据结果表明:与其他方法相比,该方法在不需要任何先验信息的条件下,可以在低信噪比的情况下较好地分离出各个变速跳频信号,同时能够精确恢复出变速跳频信号的跳频图案,在20 dB信噪比的情况下,分离后相似系数可以达到99%。该研究为变速跳频信号盲分离问题提供一个新的解决途径。  相似文献   

9.
提出一种搜索空间自适应的自适应粒子群优化算法.该算法对不同等级的粒子适应值采取不同的惯性权重,并随着算法的迭代不断缩小粒子群的搜索空间.同时,选择当前代的较优部分粒子直接进入下一代,其他粒子通过在缩小的搜索空间内随机生成,加快了种群收敛速度,同时又能使种群不断跳出局部最优解.几种典型函数的仿真实验表明,该算法在收敛速度...  相似文献   

10.
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。  相似文献   

11.
研究桁架结构频率拓扑优化的微粒群算法。采用混合罚函数法分开处理结构固有频率约束和其他约束条件,既保证所有约束能够严格满足,又提高了微粒群算法的收敛速度。由模态识别系数判断出虚节点自由度产生的局部振动模态,排除其对应的频率,得到结构真实的固有频率。算例计算结果表明,无论是频率极值优化问题,还是具有频率约束的结构优化问题,联合使用微粒群算法和模态识别系数都可以很方便地获得桁架最优截面和拓扑构型。  相似文献   

12.
该文提出一种求解无约束最优化问题新的混合算法--Powell搜索法和微粒群算法的混合算法.主要目的是通过加入混合策略证明标准微粒群算法是能够被改进的.仿真结果证明了新算法是求解无约束最优化问题的一个高效的算法.  相似文献   

13.
为了快速寻找短波频段内的目标频点,结合宽带频谱感知技术,提出了基于变邻域粒子群搜索(V N S-PS O)的短波双向探测频率选择算法.现有的探测频率选择算法依据频点的平均信噪比进行评估选优,未考虑短波信道的小尺度随机衰落特性,难以满足实时选频的要求.文中VNS-PSO算法依据大尺度衰落的相关特性,采用最大分离法得到初始探测频点集,以此来划分相关邻域;针对邻域内频点质量选择性衰落特点,采用粒子群优化算法搜索邻域内频点,得到邻域内最优解;通过变换邻域,得到全局最优解.仿真实验表明:最快速度建链时,VNS-PSO算法较VNS-RS、AASS、RSS算法M TOBC分别降低17.1%、18%、85.5%,当CPOS=0.9,建链时间分别降低2.5%,42.6%,81.7%,缩短了建立可通链路的时间;最优频点建链时,VNS-PSO算法较VNS-RS、AASS、RSS算法M TOBC分别降低11%、12.5%、45%,当CPOS=0.9,建链时间分别降低22.2%、22.4%、44.4%,短时间可找到最优频点.  相似文献   

14.
基于单纯形搜索法和免疫进化微粒群算法,提出1个求解无约束最优化问题的新的混合算法—单纯形搜索法和免疫进化微粒群算法的混合算法.由于它不需要梯度信息,所以具有易实施、收敛速度快和计算准确的优点.为了证明混合算法能够改进免疫进化微粒群算法的性能,首先利用6个测试函数进行仿真计算比较,计算结果表明,新的混合算法在求解质量和收敛速率上都优于其它进化算法(IEPSO,PSOPC,GSPSO,LSPSO and CPSO);其次,将新混合算法和最新的3种混合算法进行鲁棒性分析比较,结果表明,新混合算法在解的搜索质量、效率和关于初始点的鲁棒性方面都优于其它算法.  相似文献   

15.
提出一种结合多样性策略的自适应粒子群优化算法,该算法在粒子群的全局优化过程中,使用根据种群搜索状态自适应调整邻域空间的局部搜索算法加强算法的局部搜索能力,并允许非优粒子具有引导种群搜索方向的可能性.在著名基准函数上的对比实验结果表明,这种混合粒子群优化算法能获得更高的搜索成功率和质量更好的解,特别在高维多峰函数优化上表现出较强的竞争力.  相似文献   

16.
利用Powell搜索法求解精度高、收敛速度快和局部搜索能力强等优点,本文提出了一种与Powell搜索法相结合的改进微粒群算法实践.改进算法将微粒的搜索过程分为两阶段,第一阶段,将PSO算法的速度公式改进后进行搜索;第二阶段,将第一阶段的最后一代微粒作为Powell搜索法的初始点,让Powell搜索法与PSO算法交替进行.这样既克服了PSO算法易陷入局部最优的缺点,也大大提高了算法的求解精度和收敛速度,同时保持了微粒的多样性.仿真结果表明:同PSO算法相比,Powell-PSO算法具有较高的求解精度和较强的寻优能力,并且不论是对单峰函数还是多峰函数都能取得很好的优化效果.  相似文献   

17.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法.  相似文献   

18.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法.  相似文献   

19.
压缩搜索空间与速度范围粒子群优化算法   总被引:11,自引:1,他引:11  
为了改善粒子群优化(PSO)算法的搜索性能,提出一种改进的粒子群算法CSV PSO算法·该算法在粒子群进化的过程中根据粒子群的最佳适应值动态地压缩粒子群的搜索空间与粒子群飞行速度范围;针对PSO算法可能出现的暂时停滞现象,引入分区重新初始化机制·数值仿真结果表明:随着粒子群进化,适当的压缩粒子群搜索空间与飞行速度范围,有利于加速算法收敛,提高收敛精度;该算法收敛速度更快,精度更高,运行更为稳定·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号