首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
朴素贝叶斯分类作为一种统计分类的方法,简单高效,但它是建立在属性独立性假设的基础上,有一定的局限性,影响了它的分类效果.x2统计是一种度量属性相关性的方法,通过属性相关的分析,可以对属性进行约简,去除冗余和无关属性,达到简化朴素贝叶斯分类器的目的.朴素贝叶斯分类器的扩展方法是在非类父子结点之间添加扩展弧,表示相关属性间的依赖关系,从而扩展朴素贝叶斯分类器的结构.在数据集上的实验结果显示,KEANBC分类器优于NBC分类器,提高了分类正确率.  相似文献   

2.
朴素贝叶斯分类器是一种简单而高效的分类器,但它的条件独立性假设影响了它分类的正确率.加权朴素贝叶斯是对它的一种扩展.通过分析属性相关性的度量和属性约简,选择一组最近似独立的属性约简子集,并结合加权朴素贝叶斯和选择性贝叶斯分类器的优点,提出一种选择性的加权贝叶斯分类器SWNBC.实验结果表明,与朴素贝叶斯分类器相比,WSANBC分类器具有较高的分类正确率.  相似文献   

3.
确定出行目的是探究出行规律的重要环节,而公交智能卡数据中恰恰缺少此部分属性。将出行调查数据与智能卡数据融合,对调查数据中的上、下车时间、出行目的进行提取,基于贝叶斯概率模型对其进行分析;对应智能卡数据集,借助朴素贝叶斯分类器对缺少的出行目的属性加以补充。以石家庄市北国商城公交站为例进行实证分析,并基于不同出行目的,对乘客的日出行次数及每名乘客的出行周变规律进行分析。结果表明,该方法对出行目的估计准确率为85.6%,乘客通勤出行平均每周4.7次,因私出行每周2.9次,归家出行每周3.4次,并给出了相关统计结果。  相似文献   

4.
模式分类旨在依据识别对象特征的观察值将其归并至某个类别,贝叶斯分类决策可实现模式分类.给出一类遵从特征观察量独立性假设的贝叶斯分类器即朴素贝叶斯分类器设计.并给出朴素贝叶斯分类器的分类误差估计方法.理论分析与实验结果表明,朴素贝叶斯分类器设计方案可行,且其分类误差估计方法有效,可用于模式分类事务处理.  相似文献   

5.
基于互信息的多关系朴素贝叶斯分类器   总被引:1,自引:0,他引:1  
为进一步提高多关系朴素贝叶斯方法的分类准确率,分析了已有的剪枝方法,并扩展互信息标准到多关系情况下.基于元组号传播方法和面向元组的统计计数方法,给出了基于扩展互信息标准进行属性选择的方法和步骤,并建立了一种基于扩展互信息的多关系朴素贝叶斯分类器.标准数据集上的实验显示,基于扩展互信息标准进行属性选择,可以在不增加算法时间复杂度的前提下,找到与分类属性最相关的属性,并在仅有极少属性参与分类时,得到较高的分类准确率.Mutagenesis数据集上的实验则显示,这种属性选择可以使多关系问题退化为单关系问题,大大降低了分类代价.  相似文献   

6.
朴素贝叶斯分类器是一种简单而高效的分类器,但它的条件独立性假设使其无法将属性间的依赖关系表达出来,影响了它分类的正确率,加权朴素贝叶斯是对它的一种扩展.基于强属性限定的贝叶斯分类器SANBC,通过在强弱属性之间添加增强弧以弱化朴素贝叶斯的独立性假设,扩展了朴素贝叶斯分类器的结构;结合加权朴素贝叶斯和基于强属性限定的贝叶斯分类器SANBC的优点,提出一种基于强属性限定的加权贝叶斯分类器WSANBC;实验结果表明,WSANBC分类器具有较高的分类正确率.  相似文献   

7.
朴素贝叶斯分类算法以其简单、高效等优点一直是分类算法的研究热点之一。但是它的条件独立性假设不能很好的表现多数现实应用中变量之间存在的依赖关系,从而影响它的分类效果。针对这一问题,提出了一种改进算法,该算法通过基于协方差和卡方拟合统计量的思想来确定权重系数。实验结果表明,与朴素贝叶斯算法相比,对于分类正确率有一定的提高。  相似文献   

8.
在原有中医药冠心病临床治疗数据采集系统的基础上,使用中医证型的辨证相关因素,提出属性加权朴素贝叶斯算法,并应用到冠心病中医证型的分类模型之中.实验结果显示,对于冠心病4种证型的分类,运用属性加权朴素贝叶斯分类算法都略高于朴素贝叶斯分类算法.实验结果表明属性加权朴素贝叶斯分类算法在中医冠心病临床诊断中具有良好的分类性能.  相似文献   

9.
提出了一种基于树扩展朴素贝叶斯(tree augmented naive Bayes,TANB)的入侵检测方法.该方法基于传统的朴素贝叶斯(naive Bayes,NB)和贝叶斯网络(Bayes network,BN)方法,结合了前者计算简单和后者能表示属性间相关性的优点.同时我们提出使用增益比率进行网络特征选择来进一步提高检测性能.通过对DARPA数据的入侵检测实验,与传统方法做了比较,其结果表明,我们提出的入侵检测方法效果很好,对各种入侵类型的检测率都很高.  相似文献   

10.
朴素贝叶斯分类器具有高效率和可扩展性好等优点,它已经被广泛应用于文本分类、个人信用评估等数据挖掘任务中。但是其简单的结构和不合理的基本假设限制了该模型的分类精度和表述能力。应用集成学习算法和概率估计式对朴素更叶斯分类器作了两点改进,使得该模型的分类精度和表达能力都获得了一定提高。之后,将其用于一个典型的分类问题:根据患者的表面症状初步诊断病因,确定发病的人体生理系统,此模型在该问题上获得了较好的结果。  相似文献   

11.
处理连续变量的Bayes分类方法   总被引:2,自引:0,他引:2  
用离散化方法处理连续变量的Bayes分类方法存在着离散区段个数不好确定、无法利用某些先验信息以及会或多或少降低分类精度等问题。针对上述问题,论文提出将概率密度估计技术应用于连续变量Bayes分类,研究了如何直接利用参数化方法、非参数化方法以及半参数化方法构造连续变量的Bayes分类器,最后分析了3种构造分类器方法的优缺点,为构造连续变量的Bayes分类器和Bayesian网络分类器奠定了理论基础。计算实例表明所述方法是可行的和有效的。  相似文献   

12.
为了获取连续值域信息系统的决策规则,本文突出了一种新的方涛,这种新的方法无需对连续值域信息系统进行离散化,因此减少了由于离散化预处理所丢失的信息.通过对文中允许误差的系统对规则获取效率的影响的讨论,可以发现,在实际应用中新的方法比传统的方法更有效.  相似文献   

13.
决策树C4.5连续属性分割阈值算法改进及其应用   总被引:1,自引:0,他引:1  
结合Fayyad边界点原理提出一种新的连续值属性最佳分割阈值的选择算法.根据Fayyad连续值属性的最佳分割点总在边界点处的原理,只在连续属性分界点处的少数几个分割点中选择最佳分割阈值.构造并训练了改进C4.5分类器,将其应用于视频序列中的人车目标识别.实验结果表明:改进C4.5算法的计算量减少近20%,大大提高了决策树的生成效率,分类准确率也略有提高.  相似文献   

14.
对于决策表的属性约简,通过分析最小相关性最大依赖度属性约简算法,得到了一种更加完善的最小相关性最大依赖度属性约简算法,并通过实例验证其可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号