首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
GABA能回路在听皮层神经元频率调谐中的作用   总被引:1,自引:0,他引:1  
为了解神经抑制在听中枢神经元频率调谐过程中的作用,本研究采用多管玻璃微电极胞外记录单单位反应的方法观察了去r-氨基丁酸能抑制后大棕蝠(Eptesicusfuscus)听皮层神经元频率调谐特性的变化,结果显示:(1)97.9%的神经元频率调谐曲线扩宽,Qn值下降(p<0.0001);(2)绝大部分神经元的最小阈值下降(p<0.0001);(3)兴奋性调谐曲线面积增加(p<0.0001).该结果提供了GABA能回路参与蝙蝠听皮层神经元频率调谐的直接证据.  相似文献   

2.
By using a combined closed and free-field stimulation system, binaurality and azimuth tuning of the neurons in the auditory cortex of the big brown bat, Eptesicus fuscus, were studied. A variety of azimuth-tuning functions were demonstrated for the binaural neurons. The large majority of EE (contralateral and ipsilateral excitatory) neurons exhibited azimuth selectivity with the best azimuths (BA) at contralateral 30(- 40(, some at ipsilateral 20(-40( and preferred azimuth ranges (PAR, response amplitude ≥75% of maximum) between 8( and 40(. Sound source azimuths strongly modulate spike counts with a mean modulation depth of 83.8% for EE neurons. EI (contralateral excitatory and ipsilateral inhibitory) neurons have simple azimuth tuning with BA located at contralateral 20(-40( and a broad PAR ranged from 30( to 55(. The present results suggest that azimuth-tuning characteristics of binaural neurons in the auditory cortex of the bat are of significance for acoustic behaviour.  相似文献   

3.
Wehr M  Zador AM 《Nature》2003,426(6965):442-446
Neurons in the primary auditory cortex are tuned to the intensity and specific frequencies of sounds, but the synaptic mechanisms underlying this tuning remain uncertain. Inhibition seems to have a functional role in the formation of cortical receptive fields, because stimuli often suppress similar or neighbouring responses, and pharmacological blockade of inhibition broadens tuning curves. Here we use whole-cell recordings in vivo to disentangle the roles of excitatory and inhibitory activity in the tone-evoked responses of single neurons in the auditory cortex. The excitatory and inhibitory receptive fields cover almost exactly the same areas, in contrast to the predictions of classical lateral inhibition models. Thus, although inhibition is typically as strong as excitation, it is not necessary to establish tuning, even in the receptive field surround. However, inhibition and excitation occurred in a precise and stereotyped temporal sequence: an initial barrage of excitatory input was rapidly quenched by inhibition, truncating the spiking response within a few (1-4) milliseconds. Balanced inhibition might thus serve to increase the temporal precision and thereby reduce the randomness of cortical operation, rather than to increase noise as has been proposed previously.  相似文献   

4.
Receptive field plasticity of neurons in rat auditory cortex   总被引:2,自引:0,他引:2  
Using conventional electrophysiological technique, we investigated the plasticity of the frequency receptive fields (RF) of auditory cortex (AC) neurons in rats. In the AC, when the frequency difference between conditioning stimulus frequency (CSF) and the best frequency (BF) was in the range of 1--4 kHz, the frequency RF of AC neurons shifted. The smaller the differences between CSF and BF, the higher the probability of the RF shift and the greater the degree of the RF shift. To some extent, the plasticity of RF was dependent on the duration of the session of conditioning stimulus (CS). When the frequency difference between CSF and BF was bigger, the duration of the CS session needed to induce the plasticity was longer. The recovery time course of the frequency RF showed opposite changes after CS cessation.The RF shift could be induced by the frequency that was either higher or lower than the control BF, demonstrating no clear directional preference. The frequency RF of some neurons showed bidirectional shift, and the RF of other neurons showed single directional shift. The results suggest that the frequency RF plasticity of AC neurons could be considered asan ideal model for studying plasticity mechanism. The present study also provides important evidence for further study of learning and memory in auditory system.  相似文献   

5.
Voice-selective areas in human auditory cortex   总被引:55,自引:0,他引:55  
Belin P  Zatorre RJ  Lafaille P  Ahad P  Pike B 《Nature》2000,403(6767):309-312
The human voice contains in its acoustic structure a wealth of information on the speaker's identity and emotional state which we perceive with remarkable ease and accuracy. Although the perception of speaker-related features of voice plays a major role in human communication, little is known about its neural basis. Here we show, using functional magnetic resonance imaging in human volunteers, that voice-selective regions can be found bilaterally along the upper bank of the superior temporal sulcus (STS). These regions showed greater neuronal activity when subjects listened passively to vocal sounds, whether speech or non-speech, than to non-vocal environmental sounds. Central STS regions also displayed a high degree of selectivity by responding significantly more to vocal sounds than to matched control stimuli, including scrambled voices and amplitude-modulated noise. Moreover, their response to stimuli degraded by frequency filtering paralleled the subjects' behavioural performance in voice-perception tasks that used these stimuli. The voice-selective areas in the STS may represent the counterpart of the face-selective areas in human visual cortex; their existence sheds new light on the functional architecture of the human auditory cortex.  相似文献   

6.
Leopold DA  Bondar IV  Giese MA 《Nature》2006,442(7102):572-575
The rich and immediate perception of a familiar face, including its identity, expression and even intent, is one of the most impressive shared faculties of human and non-human primate brains. Many visually responsive neurons in the inferotemporal cortex of macaque monkeys respond selectively to faces, sometimes to only one or a few individuals, while showing little sensitivity to scale and other details of the retinal image. Here we show that face-responsive neurons in the macaque monkey anterior inferotemporal cortex are tuned to a fundamental dimension of face perception. Using a norm-based caricaturization framework previously developed for human psychophysics, we varied the identity information present in photo-realistic human faces, and found that neurons of the anterior inferotemporal cortex were most often tuned around the average, identity-ambiguous face. These observations are consistent with face-selective responses in this area being shaped by a figural comparison, reflecting structural differences between an incoming face and an internal reference or norm. As such, these findings link the tuning of neurons in the inferotemporal cortex to psychological models of face identity perception.  相似文献   

7.
In order to explore the possible mechanism of corticofugal modulation of excitatory frequency tuning curves (EFTCs) of midbrain neurons, we examined the change of sharpness, frequency-intensity response area, minimum threshold of both EFTCs and inhibitory frequency tuning curves (IFTCs) of inferior collicular neurons during corticofugal modulation using two-tone inhibition paradigm and micro-electrical stimulation technique. Our data showed that corticofugal inhibition increased sharpness, minimum threshold, and decreased the frequency-intensity response area of EFTCs, at the same time it decreased the sharpness, minimum threshold but increased the frequency-intensity response area of IFTCs. The opposite results were observed for EFTCs and IFTCs of corticofugally facilitated inferior collicular neurons. During corticofugal inhibition, the percent change of frequency-intensity response area of EFTCs had significant correlation with the percent change of that of IFTCs. These data suggest that cortical neurons are likely to improve frequency information processing of inferior collicular neurons by modulation of IFTCs.  相似文献   

8.
9.
Improved auditory spatial tuning in blind humans.   总被引:17,自引:0,他引:17  
Despite reports of improved auditory discrimination capabilities in blind humans and visually deprived animals, there is no general agreement as to the nature or pervasiveness of such compensatory sensory enhancements. Neuroimaging studies have pointed out differences in cerebral organization between blind and sighted humans, but the relationship between these altered cortical activation patterns and auditory sensory acuity remains unclear. Here we compare behavioural and electrophysiological indices of spatial tuning within central and peripheral auditory space in congenitally blind and normally sighted but blindfolded adults to test the hypothesis (raised by earlier studies of the effects of auditory deprivation on visual processing) that the effects of visual deprivation might be more pronounced for processing peripheral sounds. We find that blind participants displayed localization abilities that were superior to those of sighted controls, but only when attending to sounds in peripheral auditory space. Electrophysiological recordings obtained at the same time revealed sharper tuning of early spatial attention mechanisms in the blind subjects. Differences in the scalp distribution of brain electrical activity between the two groups suggest a compensatory reorganization of brain areas in the blind that may contribute to the improved spatial resolution for peripheral sound sources.  相似文献   

10.
Ghosh S  Larson SD  Hefzi H  Marnoy Z  Cutforth T  Dokka K  Baldwin KK 《Nature》2011,472(7342):217-220
Sensory information may be represented in the brain by stereotyped mapping of axonal inputs or by patterning that varies between individuals. In olfaction, a stereotyped map is evident in the first sensory processing centre, the olfactory bulb (OB), where different odours elicit activity in unique combinatorial patterns of spatially invariant glomeruli. Activation of each glomerulus is relayed to higher cortical processing centres by a set of ~20-50 'homotypic' mitral and tufted (MT) neurons. In the cortex, target neurons integrate information from multiple glomeruli to detect distinct features of chemically diverse odours. How this is accomplished remains unclear, perhaps because the cortical mapping of glomerular information by individual MT neurons has not been described. Here we use new viral tracing and three-dimensional brain reconstruction methods to compare the cortical projections of defined sets of MT neurons. We show that the gross-scale organization of the OB is preserved in the patterns of axonal projections to one processing centre yet reordered in another, suggesting that distinct coding strategies may operate in different targets. However, at the level of individual neurons neither glomerular order nor stereotypy is preserved in either region. Rather, homotypic MT neurons from the same glomerulus innervate broad regions that differ between individuals. Strikingly, even in the same animal, MT neurons exhibit extensive diversity in wiring; axons of homotypic MT pairs diverge from each other, emit primary branches at distinct locations and 70-90% of branches of homotypic and heterotypic pairs are non-overlapping. This pronounced reorganization of sensory maps in the cortex offers an anatomic substrate for expanded combinatorial integration of information from spatially distinct glomeruli and predicts an unanticipated role for diversification of otherwise similar output neurons.  相似文献   

11.
Y Sugase  S Yamane  S Ueno  K Kawano 《Nature》1999,400(6747):869-873
When we see a person's face, we can easily recognize their species, individual identity and emotional state. How does the brain represent such complex information? A substantial number of neurons in the macaque temporal cortex respond to faces. However, the neuronal mechanisms underlying the processing of complex information are not yet clear. Here we recorded the activity of single neurons in the temporal cortex of macaque monkeys while presenting visual stimuli consisting of geometric shapes, and monkey and human faces with various expressions. Information theory was used to investigate how well the neuronal responses could categorize the stimuli. We found that single neurons conveyed two different scales of facial information in their firing patterns, starting at different latencies. Global information, categorizing stimuli as monkey faces, human faces or shapes, was conveyed in the earliest part of the responses. Fine information about identity or expression was conveyed later, beginning on average 51 ms after global information. We speculate that global information could be used as a 'header' to prepare destination areas for receiving more detailed information.  相似文献   

12.
Quiroga RQ  Reddy L  Kreiman G  Koch C  Fried I 《Nature》2005,435(7045):1102-1107
It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show some degree of invariance to metric properties such as the stimulus size, position and viewing angle. We have previously shown that neurons in the human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes. Here we report on a remarkable subset of MTL neurons that are selectively activated by strikingly different pictures of given individuals, landmarks or objects and in some cases even by letter strings with their names. These results suggest an invariant, sparse and explicit code, which might be important in the transformation of complex visual percepts into long-term and more abstract memories.  相似文献   

13.
A movement-sensitive area in auditory cortex.   总被引:14,自引:0,他引:14  
  相似文献   

14.
Induction of visual orientation modules in auditory cortex   总被引:13,自引:0,他引:13  
Sharma J  Angelucci A  Sur M 《Nature》2000,404(6780):841-847
Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules--groups of cells that share a preferred stimulus orientation--which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in 'rewired' primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.  相似文献   

15.
Bendor D  Wang X 《Nature》2005,436(7054):1161-1165
Pitch perception is critical for identifying and segregating auditory objects, especially in the context of music and speech. The perception of pitch is not unique to humans and has been experimentally demonstrated in several animal species. Pitch is the subjective attribute of a sound's fundamental frequency (f(0)) that is determined by both the temporal regularity and average repetition rate of its acoustic waveform. Spectrally dissimilar sounds can have the same pitch if they share a common f(0). Even when the acoustic energy at f(0) is removed ('missing fundamental') the same pitch is still perceived. Despite its importance for hearing, how pitch is represented in the cerebral cortex is unknown. Here we show the existence of neurons in the auditory cortex of marmoset monkeys that respond to both pure tones and missing fundamental harmonic complex sounds with the same f(0), providing a neural correlate for pitch constancy. These pitch-selective neurons are located in a restricted low-frequency cortical region near the anterolateral border of the primary auditory cortex, and is consistent with the location of a pitch-selective area identified in recent imaging studies in humans.  相似文献   

16.
实验在40只成年SD大鼠上进行,使用常规电生理学方法,观察了电刺激大鼠内侧额叶前皮质(medial prefrontal cortex, mPFC)对听皮层神经元听反应的影响.在122个神经元上观察了电刺激mPFC对听反应的影响.对其中93个神经元作了详细分析发现,有73个神经元的听反应受到易化(39个,41.9%)或抑制(34个,36.6%).刺激mPFC对听反应的影响存在最佳刺激间隔,大多数神经元(51个,69%)在10~15 ms之间.结果提示,大鼠mPFC可对听皮层神经元的听反应调制,这种调制可能是通过多级神经元环路实现的.  相似文献   

17.
18.
Graded persistent activity in entorhinal cortex neurons   总被引:30,自引:0,他引:30  
Egorov AV  Hamam BN  Fransén E  Hasselmo ME  Alonso AA 《Nature》2002,420(6912):173-178
Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex-which link the hippocampus to extensive cortical regions-respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.  相似文献   

19.
Wang X  Lu T  Snider RK  Liang L 《Nature》2005,435(7040):341-346
It has been well documented that neurons in the auditory cortex of anaesthetized animals generally display transient responses to acoustic stimulation, and typically respond to a brief stimulus with one or fewer action potentials. The number of action potentials evoked by each stimulus usually does not increase with increasing stimulus duration. Such observations have long puzzled researchers across disciplines and raised serious questions regarding the role of the auditory cortex in encoding ongoing acoustic signals. Contrary to these long-held views, here we show that single neurons in both primary (area A1) and lateral belt areas of the auditory cortex of awake marmoset monkeys (Callithrix jacchus) are capable of firing in a sustained manner over a prolonged period of time, especially when they are driven by their preferred stimuli. In contrast, responses become more transient or phasic when auditory cortex neurons respond to non-preferred stimuli. These findings suggest that when the auditory cortex is stimulated by a sound, a particular population of neurons fire maximally throughout the duration of the sound. Responses of other, less optimally driven neurons fade away quickly after stimulus onset. This results in a selective representation of the sound across both neuronal population and time.  相似文献   

20.
Eliades SJ  Wang X 《Nature》2008,453(7198):1102-1106
Vocal communication involves both speaking and hearing, often taking place concurrently. Vocal production, including human speech and animal vocalization, poses a number of unique challenges for the auditory system. It is important for the auditory system to monitor external sounds continuously from the acoustic environment during speaking despite the potential for sensory masking by self-generated sounds. It is also essential for the auditory system to monitor feedback of one's own voice. This self-monitoring may play a part in distinguishing between self-generated or externally generatedauditory inputs and in detecting errors in our vocal production. Previous work in humans and other animals has demonstrated that the auditory cortex is largely suppressed during speaking or vocalizing. Despite the importance of self-monitoring, the underlying neural mechanisms in the mammalian brain, in particular the role of vocalization-induced suppression, remain virtually unknown. Here we show that neurons in the auditory cortex of marmoset monkeys (Callithrix jacchus) are sensitive to auditory feedback during vocal production, and that changes in the feedback alter the coding properties of these neurons. Furthermore, we found that the previously described cortical suppression during vocalization actually increased the sensitivity of these neurons to vocal feedback. This heightened sensitivity to vocal feedback suggests that these neurons may have an important role in auditory self-monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号