首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.  相似文献   

3.
Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.  相似文献   

4.
5.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

6.
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.  相似文献   

7.
Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily conserved lipid kinases that regulate a vast array of fundamental cellular responses, including proliferation, transformation, differentiation and protection from apoptosis. PI(3)K-mediated activation of the cell survival kinase PKB/Akt, and negative regulation of PI(3)K signalling by the tumour suppressor PTEN (refs 3, 4) are key regulatory events in tumorigenesis. Thus, a model has arisen that PI(3)Ks promote development of cancers. Here we report that genetic inactivation of the p110gamma catalytic subunit of PI(3)Kgamma (ref. 8) leads to development of invasive colorectal adenocarcinomas in mice. In humans, p110gamma protein expression is lost in primary colorectal adenocarcinomas from patients and in colon cancer cell lines. Overexpression of wild-type or kinase-dead p110gamma in human colon cancer cells with mutations of the tumour suppressors APC and p53, or the oncogenes beta-catenin and Ki-ras, suppressed tumorigenesis. Thus, loss of p110gamma in mice leads to spontaneous, malignant epithelial tumours in the colorectum and p110gamma can block the growth of human colon cancer cells.  相似文献   

8.
9.
NUMB is a cell fate determinant, which, by asymmetrically partitioning at mitosis, controls cell fate choices by antagonising the activity of the plasma membrane receptor of the NOTCH family. NUMB is also an endocytic protein, and the NOTCH-NUMB counteraction has been linked to this function. There might be, however, additional functions of NUMB, as witnessed by its proposed role as a tumour suppressor in breast cancer. Here we describe a previously unknown function for human NUMB as a regulator of tumour protein p53 (also known as TP53). NUMB enters in a tricomplex with p53 and the E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing ubiquitination and degradation of p53. This results in increased p53 protein levels and activity, and in regulation of p53-dependent phenotypes. In breast cancers there is frequent loss of NUMB expression. We show that, in primary breast tumour cells, this event causes decreased p53 levels and increased chemoresistance. In breast cancers, loss of NUMB expression causes increased activity of the receptor NOTCH. Thus, in these cancers, a single event-loss of NUMB expression-determines activation of an oncogene (NOTCH) and attenuation of the p53 tumour suppressor pathway. Biologically, this results in an aggressive tumour phenotype, as witnessed by findings that NUMB-defective breast tumours display poor prognosis. Our results uncover a previously unknown tumour suppressor circuitry.  相似文献   

10.
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.  相似文献   

11.
Tumour progression is a fundamental feature of the biology of cancer. Cancers do not arise de novo in their final form, but begin as small, indolent growths, which gradually acquire characteristics associated with malignancy. In the brain, for example, low-grade tumours (astrocytomas) evolve into faster growing, more dysplastic and invasive high-grade tumours (glioblastomas). To define the genetic events underlying brain tumour progression, we analysed the p53 gene in ten primary brain tumour pairs. Seven pairs consisted of tumours that were high grade both at presentation and recurrence (group A) and three pairs consisted of low-grade tumours that had progressed to higher grade tumours (group B). In group A pairs, four of the recurrent tumours contained a p53 gene mutation; in three of them, the same mutation was found in the primary tumour. In group B pairs, progression to high grade was associated with a p53 gene mutation. A subpopulation of cells were present in the low-grade tumours that contained the same p53 gene mutation predominant in the cells of the recurrent tumours that had progressed to glioblastoma. Thus, the histological progression of brain tumours was associated with a clonal expansion of cells that had previously acquired a mutation in the p53 gene, endowing them with a selective growth advantage. These experimental observations strongly support Nowell's clonal evolution model of tumour progression.  相似文献   

12.
13.
D Eliyahu  D Michalovitz  M Oren 《Nature》1985,316(6024):158-160
The p53 cellular tumour antigen, long known to be overproduced in a variety of neoplastically transformed cells, was recently shown to be directly involved in transformation. Thus, p53 can complement activated Ha-ras in transforming secondary rat embryo fibroblasts into grossly altered, tumorigenic cells. Moreover, p53 can also be shown to possess immortalizing activity. Our previous results indicated, however, that the contribution of p53 to the transformation was not synonymous with immortalization, suggesting that the two activities of the protein are probably separable. We demonstrate here that this is indeed the case, as overproduction of p53 in an established cell line, while not causing gross morphological changes, endows these cells with an overt tumorigenic potential. Furthermore, the tumorigenic efficiency of such cell lines may be correlated with the extent of p53 over-production.  相似文献   

14.
Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.  相似文献   

15.
L F Parada  H Land  R A Weinberg  D Wolf  V Rotter 《Nature》1984,312(5995):649-651
The protein p53 is highly expressed in a large variety of transformed cell types originating from diverse species. These include cells transformed by Simian virus 40 (SV40), adenovirus and Abelson virus, as well as a variety of chemically transformed cells. Substantial amounts of p53 are also present in certain non-transformed cells, for example, some embryonic tissues. The protein may be localized in different cellular compartments in normal and transformed cells. The strong correlation between tumorigenicity and high levels of p53 suggests an important role of p53 in tumorigenesis. We report here experiments in which we have co-transfected the murine cellular gene encoding for p53 with a ras gene into primary rat embryo fibroblasts. Our results indicate that the p53-encoding gene can play a causal role in the conversion of normal fibroblasts into tumorigenic cells.  相似文献   

16.
P R Yew  A J Berk 《Nature》1992,357(6373):82-85
  相似文献   

17.
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent loss of heterozygosity and a 10% mutation rate of the Fbxw7 gene. Fbxw7+/- mice have greater susceptibility to radiation-induced tumorigenesis, but most tumours retain and express the wild-type allele, indicating that Fbxw7 is a haploinsufficient tumour suppressor gene. Loss of Fbxw7 alters the spectrum of tumours that develop in p53 deficient mice to include a range of tumours in epithelial tissues such as the lung, liver and ovary. Mouse embryo fibroblasts from Fbxw7-deficient mice, or wild-type mouse cells expressing Fbxw7 small interfering RNA, have higher levels of Aurora-A kinase, c-Jun and Notch4, but not of cyclin E. We propose that p53-dependent loss of Fbxw7 leads to genetic instability by mechanisms that might involve the activation of Aurora-A, providing a rationale for the early occurrence of these mutations in human cancers.  相似文献   

18.
To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.  相似文献   

19.
应用PCRSSCP技术及DNA 测序技术对37 例原发性脑肿瘤及相应外周血淋巴细胞中p53 基因5 ~8 外显子的突变情况进行了检测,结果表明,p53 基因在原发性脑肿瘤中的突变频率为19 % (7/37) .并且突变频率在不同病理类别脑肿瘤中的分布是非随机的,其中星形细胞肿瘤中的突变频率最高,为36 % (5/14) .所有突变均为错义点突变,57 % (4/7) 的突变位于CpG位点.突变仅发现于脑组织中,外周血淋巴细胞中未检出突变,这些结果提示,p53 基因突变在脑肿瘤的发生发展过程中起一定的作用,p53 基因在散发性脑肿瘤中的突变为体细胞型的突变  相似文献   

20.
Mutations in the p53 gene occur in diverse human tumour types   总被引:196,自引:0,他引:196  
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号