首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sadqi M  Fushman D  Muñoz V 《Nature》2006,442(7100):317-321
Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.  相似文献   

2.
A peptide model of a protein folding intermediate   总被引:21,自引:0,他引:21  
T G Oas  P S Kim 《Nature》1988,336(6194):42-48
It is difficult to determine the structures of protein folding intermediates because folding is a highly cooperative process. A disulphide-bonded peptide pair, designed to mimic the first crucial intermediate in the folding of bovine pancreatic trypsin inhibitor, contains secondary and tertiary structure similar to that found in the native protein. Peptide models like this circumvent the problem of cooperativity and permit characterization of structures of folding intermediates.  相似文献   

3.
Religa TL  Markson JS  Mayor U  Freund SM  Fersht AR 《Nature》2005,437(7061):1053-1056
The most controversial area in protein folding concerns its earliest stages. Questions such as whether there are genuine folding intermediates, and whether the events at the earliest stages are just rearrangements of the denatured state or progress from populated transition states, remain unresolved. The problem is that there is a lack of experimental high-resolution structural information about early folding intermediates and denatured states under conditions that favour folding because competent states spontaneously fold rapidly. Here we have solved directly the solution structure of a true denatured state by nuclear magnetic resonance under conditions that would normally favour folding, and directly studied its equilibrium and kinetic behaviour. We engineered a mutant of Drosophila melanogaster Engrailed homeodomain that folds and unfolds reversibly just by changing ionic strength. At high ionic strength, the mutant L16A is an ultra-fast folding native protein, just like the wild-type protein; however, at physiological ionic strength it is denatured. The denatured state is a well-ordered folding intermediate, poised to fold by docking helices and breaking some non-native interactions. It unfolds relatively progressively with increasingly denaturing conditions, and so superficially resembles a denatured state with properties that vary with conditions. Such ill-defined unfolding is a common feature of early folding intermediate states and accounts for why there are so many controversies about intermediates versus compact denatured states in protein folding.  相似文献   

4.
J P Staley  P S Kim 《Nature》1990,344(6267):685-688
The disulphide-bonded intermediates that accumulate in the oxidative folding of bovine pancreatic trypsin inhibitor (BPTI) were characterized some time ago. Structural characterization of these intermediates would provide an explanation of the kinetically preferred pathways of folding for BPTI. When folding occurs under strongly oxidizing conditions, more than half the molecules become trapped in an intermediate, designated N*, which is similar to the native protein but lacks the 30-51 disulphide bond. We have tested the hypothesis that the precursor to N* is the one-disulphide intermediate [5-55], which contains the most stable disulphide in BPTI, and present evidence here that this is the case. A peptide model of [5-55], corresponding to a subdomain of BPTI, seems to fold into a native-like conformation, explaining why [5-55] does not lead to native protein and why it folds rapidly to N*. A native-like subdomain structure in a peptide model of [30-51], the other crucial one-disulphide intermediate, may explain the route by which [30-51] folds to native protein. Thus, much of the folding pathway of BPTI can be explained by the formation of a native-like subdomain in these two early intermediates. This suggests that a large part of the protein folding problem can be reduced to identifying and understanding subdomains of native proteins.  相似文献   

5.
6.
Demonstration by NMR of folding domains in lysozyme   总被引:14,自引:0,他引:14  
A Miranker  S E Radford  M Karplus  C M Dobson 《Nature》1991,349(6310):633-636
Although there has been much speculation on the pathways of protein folding, only recently have experimental data on the topic been available. The study of proteins under conditions where species intermediate between the fully folded and unfolded states are stable has provided important information, for example about the disulphide intermediates in BPTI, cis/trans proline isomers of RNase A3 and the molten globule state of alpha-lactalbumin. An alternative approach to investigating folding pathways has involved detection and characterization of transient conformers in refolding studies using stopped-flow methods coupled with NMR measurements of hydrogen exchange. The formation of intermediate structures has been detected in the early stages of folding of cytochrome c, RNaseA and barnase. For alpha-lactalbumin, hydrogen exchange kinetics monitored by NMR proved to be crucial for identifying native-like structural features in the stable molten globule state. An analogous partially folded protein stable under equilibrium conditions has not been observed for the structurally homologous protein hen egg-white lysozyme, although there is evidence that a similar but transient state is formed during refolding. Here we describe NMR experiments based on competition between hydrogen exchange and the refolding process which not only support the existence of such a transient species for lysozyme, but enable its structural characteristics to be defined. The results indicate that the two structural domains of lysozyme are distinct folding domains, in that they differ significantly in the extent to which compact, probably native-like, structure is present in the early stages of folding.  相似文献   

7.
Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the reactions involved, it is challenging to obtain information of this type in cases where the intermediates are transient or present only at low population. One important example of such a situation involves the folding behaviour of small proteins that represents a model for the acquisition of functional structure in biology. Here we use relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy to identify, for two mutational variants of one such protein, the SH3 domain from Fyn tyrosine kinase, a low-population folding intermediate in equilibrium with its unfolded and fully folded states. By performing the NMR experiments at different temperatures, this approach has enabled characterization of the kinetics and energetics of the folding process as well as providing structures of the intermediates. A general strategy emerges for an experimental determination of the energy landscape of a protein by applying this methodology to a series of mutants whose intermediates have differing degrees of native-like structure.  相似文献   

8.
T Langer  C Lu  H Echols  J Flanagan  M K Hayer  F U Hartl 《Nature》1992,356(6371):683-689
The main stress proteins of Escherichia coli function in an ordered protein-folding reaction. DnaK (heat-shock protein 70) recognizes the folding polypeptide as an extended chain and cooperates with DnaJ in stabilizing an intermediate conformational state lacking ordered tertiary structure. Dependent on GrpE and ATP hydrolysis, the protein is then transferred to GroEL (heat-shock protein 60) which acts catalytically in the production of the native state. This sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.  相似文献   

9.
Detection and characterization of a folding intermediate in barnase by NMR   总被引:17,自引:0,他引:17  
Protein engineering is being developed for mapping the energetics and pathway of protein folding. From kinetic studies on wild-type and mutant proteins, the sequence and energetics of formation of tertiary interactions of side chains can be mapped and the formation of secondary structure inferred. Here we cross-check and complement results from this approach by using a recently developed procedure that traps and characterizes secondary structure in intermediate states using 1H NMR. The refolding of barnase is shown to be a multiphasic process in which the secondary structure in alpha-helices and beta-sheets and some turns is formed more rapidly than is the overall folding.  相似文献   

10.
Y Zhou  M Karplus 《Nature》1999,401(6751):400-403
The detailed mechanism of protein folding is one of the major problems in structural biology. Its solution is of practical as well as fundamental interest because of its possible role in utilizing the many sequences becoming available from genomic analysis. Although the Levinthal paradox (namely, that a polypeptide chain can find its unique native state in spite of the astronomical number of configurations in the denatured state) has been resolved, the reasons for the differences in the folding behaviour of individual proteins remain to be elucidated. Here a Calpha-based three-helix-bundle-like protein model with a realistic thermodynamic phase diagram is used to calculate several hundred folding trajectories. By varying a single parameter, the difference between the strength of native and non-native contacts, folding is changed from a diffusion-collision mechanism to one that involves simultaneous collapse and partial secondary-structure formation, followed by reorganization to the native structure. Non-obligatory intermediates are important in the former, whereas there is an obligatory on-pathway intermediate in the latter. Our results provide a basis for understanding the range of folding behaviour that is observed in helical proteins.  相似文献   

11.
The 'molten' globular conformation of a protein is compact with a native secondary structure but a poorly defined tertiary structure. Molten globular states are intermediates in protein folding and unfolding and they may be involved in the translocation or insertion of proteins into membranes. Here we investigate the membrane insertion of the pore-forming domain of colicin A, a bacteriocin that depolarizes the cytoplasmic membrane of sensitive cells. We find that this pore-forming domain, the insertion of which depends on pH, undergoes a native to molten globule transition at acidic pH. The variation of the kinetic constant of membrane insertion of the protein into negatively charged lipid vesicles as a function of the interfacial pH correlates with the appearance of the acidic molten globular state, indicating that this state could be an intermediate formed during the insertion of colicin A into membranes.  相似文献   

12.
Trigger factor and DnaK cooperate in folding of newly synthesized proteins.   总被引:22,自引:0,他引:22  
The role of molecular chaperones in assisting the folding of newly synthesized proteins in the cytosol is poorly understood. In Escherichia coli, GroEL assists folding of only a minority of proteins and the Hsp70 homologue DnaK is not essential for protein folding or cell viability at intermediate growth temperatures. The major protein associated with nascent polypeptides is ribosome-bound trigger factor, which displays chaperone and prolyl isomerase activities in vitro. Here we show that delta tig::kan mutants lacking trigger factor have no defects in growth or protein folding. However, combined delta tig::kan and delta dnaK mutations cause synthetic lethality. Depletion of DnaK in the delta tig::kan mutant results in massive aggregation of cytosolic proteins. In delta tig::kan cells, an increased amount of newly synthesized proteins associated transiently with DnaK. These findings show in vivo activity for a ribosome-associated chaperone, trigger factor, in general protein folding, and functional cooperation of this protein with a cytosolic Hsp70. Trigger factor and DnaK cooperate to promote proper folding of a variety of E. coli proteins, but neither is essential for folding and viability at intermediate growth temperatures.  相似文献   

13.
Zhou Z  Bai Y 《Nature》2007,445(7129):E16-7; discussion E17-8
The folding of small proteins has been assumed to be an all-or-none process that involves high cooperativity within the structure and substantial kinetic-energy barriers. Sadqi et al. claim that the small re-engineered protein Naf-BBL unfolds without significant cooperativity or kinetic hindrance, a conclusion that is based on calculation of a broad distribution of midpoint thermal-transition temperatures measured by the nuclear magnetic resonance (NMR) chemical shifts of 158 protons. We find that all of the unprocessed melting curves can be fitted to the same two-state global unfolding when uncertainties in the experimental data are taken into account. We conclude that the authors' melting data for Naf-BBL remain consistent with the all-or-none process.  相似文献   

14.
IntroductionRecent studies of the protein folding pathway andintermediate states in vitro and in vivo haveinduced much interest in the importance ofunderstanding the propertiesof partially structuredintermediates[1 7] . Studies have suggested thatintermed…  相似文献   

15.
The transport of protons across membranes is an important process in cellular bioenergetics. The light-driven proton pump bacteriorhodopsin is the best-characterized protein providing this function. Photon energy is absorbed by the chromophore retinal, covalently bound to Lys 216 via a protonated Schiff base. The light-induced all-trans to 13-cis isomerization of the retinal results in deprotonation of the Schiff base followed by alterations in protonatable groups within bacteriorhodopsin. The changed force field induces changes, even in the tertiary structure, which are necessary for proton pumping. The recent report of a high-resolution X-ray crystal structure for the late M intermediate of a mutant bacteriorhopsin (with Asp 96-->Asn) displays the structure of a proton pathway highly disturbed by the mutation. To observe an unperturbed proton pathway, we determined the structure of the late M intermediate of wild-type bacteriorhodopsin (2.25 A resolution). The cytoplasmic side of our M2 structure shows a water net that allows proton transfer from the proton donor group Asp 96 towards the Schiff base. An enlarged cavity system above Asp 96 is observed, which facilitates the de- and reprotonation of this group by fluctuating water molecules in the last part of the cycle.  相似文献   

16.
蛋白质折叠的三维计算机模拟   总被引:1,自引:0,他引:1  
介绍了计算机模拟蛋白质的三维模型,利用混合遗传算法对模型问题进行了模拟计算,获得了由27个氨基酸残基组成的肽链的能量最小的折叠构象,计算结果表明,对于蛋白质折叠的三维晶格模型而言混合遗传算法是很有效的。  相似文献   

17.
The molten globule protein conformation probed by disulphide bonds   总被引:8,自引:0,他引:8  
J J Ewbank  T E Creighton 《Nature》1991,350(6318):518-520
The molten globule is a compact protein conformation that has a secondary structure content like that of the native protein, but poorly defined tertiary structure. It is a stable state for a few proteins under particular conditions and could be a ubiquitous kinetic intermediate in protein folding. The extent to which native interactions, above the level of the secondary structure, are preserved in this conformation is not so far known. Here we report that alpha-lactalbumin can adopt a molten globule conformation when one of its four disulphide bonds is reduced. In this state, the three other disulphide bonds rearrange spontaneously, at the same rate as when the protein is fully unfolded, to a number of different disulphide bond isomers that tend to maintain the molten globule conformation. That the molten globule state is compatible with a variety of disulphide bond pairings suggests that it is unlikely to be stabilized by many specific tertiary interactions.  相似文献   

18.
Vendruscolo M  Paci E  Dobson CM  Karplus M 《Nature》2001,409(6820):641-645
Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements--which determine the role of individual residues in stabilizing the transition state--as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6 A from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.  相似文献   

19.
用分子动力学模拟方法研究了小蛋白天然结构集合与其折叠速度的关系.根据蛋白质内存在接触的不同定义方式.利用分子动力学模拟方法得到了10个小蛋白的一系列构象集合,分析了其拓扑参数与折叠速度的关系,并与PDB单构象的情况进行了比较.用含主链重原子的方式定义接触,所计算的结果较好,天然结构集合所计算的拓扑参数与蛋白质折叠速度的关系可以更真实地反映实际情况.  相似文献   

20.
蛋白质折叠过程模型研究一直是蛋白质折叠研究领域的热点课题.就这个问题,提出描述蛋白质折叠过程的拟蛇模型.并且提出一个新的概念,那就是所有蛋白质空间结构都可以通过2种类型函数构造出来,此外,还从理论方面来证明该模型是可行和正确的:通过与其他蛋白质折叠过程模型的对比实验,结果表明,拟蛇模型所构造的空间结构能量值最小、相似度最好.进而说明拟蛇模型在描述蛋白质折叠过程方面具有明显优势,开辟了研究蛋白质的一种新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号