首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Moff.  AS 范宗理 《世界科学》1991,13(10):15-17
研究人员促成了固氮根瘤菌到包括稻子在内的非豆科植物的根际安家结瘤.固氮根瘤菌是一种极其特别的细菌.除个别例外,它们只能在豆科植物例如大豆,苜蓿和刺槐的根部结瘤固氮.这种细菌,摄取在空气中无用的氮气,并将其转化成氨和植物的其他营养成份.实际上,细菌是为  相似文献   

2.
我们怀着十分喜悦的心情,向大家推荐《作物根瘤的人工诱发》一文。作者王曼新同志运用磁处理的技术,对一些农作物的播种进行了某些适当的处理后,使许多种作物发生了可喜的变异:在根部长出了根瘤(本期封面和封二照片就是这些根瘤的形状)。这一成就,令人振奋,令人瞩目!  相似文献   

3.
英国科学和工业研究局的科学家们发现,果树和森林中的树木根部溃疡可进行生物学防治。树根溃疡是土壤中的真菌所致。这种真菌可耗竭土壤中的全部水份。这一认识启发科学家们做灌溉性实验来进行防治。这样,有效地供土壤供给了厌氧微生生物细菌。这些细菌中三种为梭状牙胞杆菌属,四种为杆状细菌。  相似文献   

4.
目前一发的基因改良农作物主要有,内含细菌基因的棉花和玉米,能生成对害虫有毒的化合物,有其他细菌基因的生物工程大豆和油菜作物,能抵抗除草剂,携带病毒基因的木薯,能抵抗致命疾病的危害,现在,反对基因改良作物的人士已经采取行动在这些转基因农作物的田边插上“恶魔食物”的标记以示抗议,不过下一代生物工程作物将难以用这种随意加给的恶名来丑化了,因为它们是由于自身基因的改造而变得更加健状和多产的。  相似文献   

5.
禾本科作物小麦能吸收和积累聚苯乙烯塑料微球   总被引:3,自引:0,他引:3  
李瑞杰  李连祯  张云超  杨杰  涂晨  周倩  李远  骆永明 《科学通报》2020,65(20):2120-2127
农用地土壤中微塑料的积累及分布已有报道,食用蔬菜在溶液培养下能吸收微塑料也已被发现,但微塑料能否在固相培养条件下进入禾本科作物中并在体内传递积累尚未被证实.本研究选用小麦作为模式植物,以0.2μm荧光标记聚苯乙烯微球为供试微塑料材料,采用真实河砂盆栽培养实验,结合激光共聚焦荧光显微和扫描电子显微技术,发现小麦幼苗在砂培条件下能吸收和传输0.2μm聚苯乙烯微球.小麦幼苗在含有荧光标记微球的河砂中生长21 d后,其根部维管柱和外皮层细胞壁间隙组织中呈现较强的荧光分布,表明这种亚微米级塑料微球能被小麦吸收进入根部外皮层质外体空间和维管组织.塑料微球进入根部维管柱后,可通过维管组织运输到地上部的茎部维管束和叶片的脉管组织中.研究结果为进一步认知土壤-作物系统中微塑料的传递与积累机制提供了方法学和科学依据.  相似文献   

6.
植物固氮研究新进展有些植物——主要是豆科植物——可让农民们少费不少心、这些植物在它们的根部长有能够自己固氮的瘤,而其余的植物则必需要施肥。科学家们已经试验了多年——不过还没有成功——试图让非豆科植物也长出固氮瘤。然而,研究人员知道,豆科植物的这种本领...  相似文献   

7.
王新宇  高英志 《科学通报》2020,(Z1):142-149
综述以往研究发现,大多数禾本科/豆科间作都会显著增加豆科作物的固氮比例(%Ndfa),并认为这种增加是由于禾本科作物对豆科作物根际氮素的耗竭作用引发的.但豆科作物体内通常会在氮磷之间保持稳定的化学计量关系,豆科作物共生固氮的增加会使作物生长受到磷的限制.在这种磷素限制条件下豆科作物会被激发出潜在的磷吸收策略,即通过根系分泌物或丛枝菌根真菌增加对土壤磷素的获取满足其自身固氮对磷素的大量需求,进而增强豆科作物自身的结瘤及固氮.此外,随着分子生物学技术的发展,新近研究发现禾本科作物根系分泌物能上调豆科根部关键结瘤基因NODL4, ENODL2, ENOD93,固氮基因FixI3,查尔酮-黄酮异构酶CFI基因和生长素响应基因GH3.1的表达,这些基因超量表达可促进豆科作物类黄酮物质的分泌、根毛卷曲、结瘤并促进豆科作物固氮.间作作物间通过根际氮素耗竭作用、磷素活化作用以及固氮基因分子调控等三个层面上互相偶联来促进间作系统氮素吸收、优化氮素利用效率和提升作物产量,这些研究对促进和发展禾本科/豆科间作固氮理论体系具有重要指导意义.  相似文献   

8.
加利佛尼亚州的研究工作者已分离出一种细菌的基因。这种基因的研究最终将会在作物抗御严寒方面得到应用。这些美国植物病理学家分离出的基因,在水的冷冻期间,有助于形成结冰的晶核。大家知道,液态水可以“过冷”至大约—5℃而不结冰。但是,  相似文献   

9.
一、研究目的豆科植物的根部与土壤中固氮细菌、根瘤菌共生的根瘤体是固定和吸收空气中的氮气、土壤中的游离氮,以补充其自体合成蛋白质所必需的氮素养料,并且又是促进土壤熟化,提高土壤肥力的重要生物宝  相似文献   

10.
超级细菌的风头正劲之时,美国又出现了更彪悍的超级细菌,它比以往细菌的抗药性更强,可谓"抗生素杀手"。 这种超级细菌之王就是CRKP,全称是碳青霉烯类耐药肺炎克雷伯菌。研究结果表明,人感染这种细菌后的死亡率达到35%。CRKP并不是最近才出现的,10年前人们就已经在讨论这种细菌了。  相似文献   

11.
抚仙湖是寡营养大型淡水深水湖,在该湖近百年的沉积物中检出了高丰度的含季碳原子的长链支链烷烃(C2n支链烷烃)、长链环戊烷和长链环己烷系列化合物,其分布特征表现为独特的奇碳或偶碳模式.检出的8种C2n支链烷烃和长链环烷烃在沉积剖面上具有完全一致的丰度变化,表明它们来源的一致性.同时这两类化合物与藻类和细菌来源的短链奇碳正构烷烃(C20)、3-甲基烷烃、藿烯、多不饱和脂肪酸、植醇、甾醇、以及长链烷基二醇在剖面上具有相似的丰度变化;而与高等植物来源的长链奇碳正构烷烃具有一定的丰度变化差异,这表明C2n化合物和长链环烷烃可能与水体中藻类和细菌的输入有关,特别是低氧含量水体中改造藻类有机质的异养细菌,这与抚仙湖独特的水体环境有关.  相似文献   

12.
两位澳大利亚学者在人类胃中发现了一种似乎是新的螺旋形细菌。这种细菌的发现初看起来,只不过是在数千种己知细菌中,增添了一个新品种,其实不然,因为初步认为,这种细菌与多种令人痛苦的疾病如胃炎、消化性溃疡以及其它疾病有关。而美国有几百万人患有这些病因不明的疾病。  相似文献   

13.
对于欧洲人来说,人参是一种神秘虚幻的东两对东方人来说它是一种现实作在的宝贵药物。几千年来人参被称作是野生植物之于,据传说,人参这一植物中长在闪电击过的地方.只有“天国之火”的力量。这种植物的宝贵之处集中在根部,它根部的形状就像人的形状。人们相信人参植物的根部对人的健康有极大的作用,能使人永葆青春因此被誉为“生命之根”、“长生药”.在很长一段时间里,人们相信人曼得拉草参是神创造的。他们认为圣灵在升天归去时,在地下留下像人的植物根部,把他的血液给予人类,使人类健康和长寿,当然.人参不可能是神所创造的…  相似文献   

14.
大约90年前,欧洲的两位学者分别同时发现了一种杀灭细菌的微生物,这种微生物通常会附着在一个细菌的表面,如同一艘飞船降落在月球的表面一样,然后,它们将自己的基因注射进细菌的体内,并在那里大量复制,直至完全控制细菌,达到杀灭细菌的目的。这种微生物的发现者之一费利克斯.赫罗(Felixd'Herelle)是巴黎巴斯德研究院的科学家。赫罗发现这种微生物具有神奇的力量,于是将它们运用于治疗传染性疾病,如霍乱和黑死病等。与此同时,赫罗也为它们起了一个名字:噬菌体(bacteriophage),它的意思是“细菌的掠食者”。然而,今天的科学家发现,噬菌体的作…  相似文献   

15.
美国科学家说,将甲醇溶液喷洒在某些作物的叶子上,可减少这些作物的枯萎并使它们更快地结出较甜的果实。他们发现这种措施甚至对那些生长在荒芜的沙摸中的作物也有效。亚利桑那州光子股份有限公司的阿瑟·野野村和圣迭戈斯克利普斯海洋研究所的安德鲁·本森认为,只要使用这种简单的化学物质,农民们就能增加某些作物的产量并减少它们的灌溉用水。他们还认为,通过研究植物使用甲醇的方式,科学家们可对光合作用和呼吸  相似文献   

16.
美国农业部最近说,科学家已经发现了一种可使家禽、猪、牛和人患上多种疾病的细菌基因。 美国农业部行政官员米利·冈萨雷斯(MileyGonzalwz)在一则新闻中说:“这项研究突破有可能使人们尽早发现和预防这些疾病,从而减少农民每年因为这种细菌导致的疾病而造成的巨大损失。” 这种出血败血性巴斯德细菌的基因组成是由明尼苏达大学的研究人员发现的。 美国农业部说,出血败血性巴斯德菌会引起鸡和火鸡中的禽霍乱以及猪、牛和家禽中致命的呼吸道疾病,单单是家禽一项,美国农民每年的损失估计就高达2亿美元。 这种细菌还能感…  相似文献   

17.
正最近,科学家发现了一种强大的新抗生素。这种抗生素能对抗实验室和动物测试中的许多感染,包括一些对传统抗生素产生耐药性的细菌。这是通过创新性的基因测序技术发现的又一种新型抗生素。研究人员筛查了1500种土壤样本中的遗传物质,并用这种技术筛查了此前在实验室中无法培育或研究的数千种土壤细菌。这种新的化合物具有干扰感染细菌形成细胞壁的能  相似文献   

18.
留长指甲不利于健康 不少人喜欢留长指甲,认为这样可以使手指看起来更修长、更好看,但是长指甲会给人的健康带来诸多隐患.一方面,指甲过长,指甲缝中就很容易藏污纳垢,使得细菌繁殖很快.平时我们拿食物、抓身体等,都会造成指甲缝里的细菌进入人体,危害人的身体健康.另一方面,如果指甲过长,会使得指甲很锐利,很容易在不经意间划伤自己或他人.由于长指甲上细菌较多,很容易造成伤口的感染.同时,指甲过长,抓取东西时还会很不方便,而且很容易在不经意间把指甲弄劈,对指甲的健康也很不利,所以不提倡留长指甲.  相似文献   

19.
基因设计者     
1980年斯坦福大学的斯坦雷·科恩(StanleyCohen)博士和加州大学旧金山分校的赫伯特博耶(Herbert Boyer)博士根据美国联邦最高法院一次破天荒的决定,取得一项异乎寻常的专利。这项专利涉及到“制备生物学方面功能分子的重组体的流程。”1973年科恩和博耶就已经把异体基因引入细菌体内,并产生一个新的和独特的生命形态,人类有史以来第一次两种互不相干的基因物质(另一种是病毒)在实验室获得组合。事实上,这是第一个成功地重组DNA或“基因拼接”试验。科恩把这种新的细菌叫做““DNA重组体”,在此之前只在神话中听说有长着狮子、蛇和山羊脑袋的三头怪兽。  相似文献   

20.
CRISPR/Cas是存在于细菌及古细菌中成簇的、规律间隔的短回文重复序列及其核酸酶系统,是细菌和古细菌中破坏噬菌体与外源DNA的免疫防护机制.科学家将该免疫防护机制改造成了简便高效的基因组编辑工具,并在微生物、动物及植物的基因功能解析及改良方面取得了巨大的进展.本文先对基于CRISPR/Cas开发的植物基因组编辑工具,如CRISPR/Cas9、CRISPR/Cas介导的同源重组、胞嘧啶碱基编辑器、腺嘌呤碱基编辑器、双碱基编辑器和引导编辑器等进行介绍,接着详细阐述了在作物分子育种中越来越重要的DNA-free CRISPR/Cas植物基因组编辑技术,然后探讨了CRISPR/Cas基因组编辑技术在提高作物产量和品质、提高作物对生物及非生物逆境抗性、从头驯化及定向改良等方面的应用,分析了CRISPR/Cas植物基因组编辑技术的发展趋势、促进该技术应用的国家政策导向及社会环境,以便更好地促进CRISPR/Cas基因组编辑技术在农作物品种改良中的应用,助推我国种业振兴和藏粮于技战略的实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号