首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Betts RA 《Nature》2000,408(6809):187-190
Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular, the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather than mitigating it as intended.  相似文献   

2.
The human footprint in the carbon cycle of temperate and boreal forests   总被引:7,自引:0,他引:7  
Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).  相似文献   

3.
林业碳汇提升的主要原理和途径   总被引:1,自引:0,他引:1  
降低大气CO2含量、缓解气候变暖,已成为当今科学界和国际社会广泛关注的前沿热点问题。林业碳汇作为基于自然解决方案实现“碳达峰、碳中和”的一个重要途径,在应对全球气候变化方面发挥着基础性、战略性、独特的作用。林业碳汇不仅是森林碳汇,林产品碳汇也起着不可忽视的重要作用。林业碳汇潜力提升是一个森林生态系统净碳收支平衡和全产业链林产品碳汇的调控过程,主要包括无机碳的植物固定(光合过程、净生产力等)、土壤有机碳的周转与固定(动植物和微生物残体分解与黏土固定)、林产品碳的固持(林产品产量、木材转换效率、种类和使用寿命等)等3方面的调控原理。笔者从森林碳汇和林产品碳汇两个维度阐述了提升林业碳汇的主要原理、方法或途径。提升林业碳汇潜力的主要途径包括:①通过适地适树、适钙适树人工造林,以增加森林面积;②以完善森林经营措施来增加森林净生产力;③利用矿质黏土对有机碳的保护来增加森林土壤碳汇;④提升林产品产量和改进林产品用途以增加其寿命。在全球尺度上,增加森林面积或提高森林净生产力3.4%,或用可再生能源替换薪炭木材,再将薪炭木材用于制造锯材和人造板,都可以连续30 a每年增加1 Pg的碳汇量。减少全球森林火灾面积1/4或增加森林土壤有机碳含量0.23%,也可以增加碳汇1 Pg。此外,林业固碳还有巨大潜力可以挖掘。  相似文献   

4.
Old-growth forests as global carbon sinks   总被引:15,自引:0,他引:15  
Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.  相似文献   

5.
林火可以改变森林生态系统元素的生态化学计量特征,反映火后森林生态系统环境中生物地球化学循环变化模式,阐明林火干扰下森林生态系统碳(C)氮(N)磷(P)生态化学计量特征,对于理解森林生态系统对林火干扰的响应机理至关重要。笔者通过查阅大量相关文献,总结与分析了林火干扰对森林生态系统C-N-P生态化学计量特征影响模式,以及林火干扰对植物C-N-P生态化学计量特征、凋落物C-N-P生态化学计量特征、土壤C-N-P生态化学计量特征的影响,认为森林生态系统C-N-P生态化学计量特征主要受到火烧因子(火烧强度、火烧频率、火烧后恢复时间)、植被类型及土壤性质3个方面的影响,针对林火对森林生态系统生态化学计量学研究亟待解决的科学问题,从林火干扰对植物生态化学计量内稳性的影响机制、林火干扰下多重元素生态化学计量学研究、建立林火干扰下植物-凋落物-土壤复合系统生态化学计量学关系等3个方面进行了展望,以期深入了解林火干扰下植物调控策略,明确林火干扰后多重化学元素间相互耦合机制,完善以植物-凋落物-土壤为复合整体的地上地下养分输入输出的关系,对于深刻理解全球气候变化背景下森林生态系统养分循环和平衡,以及合理制定林火管理措施具有重要作用。  相似文献   

6.
Terrestrial ecosystems control carbon dioxide fluxes to and from the atmosphere through photosynthesis and respiration, a balance between net primary productivity and heterotrophic respiration, that determines whether an ecosystem is sequestering carbon or releasing it to the atmosphere. Global and site-specific data sets have demonstrated that climate and climate variability influence biogeochemical processes that determine net ecosystem carbon dioxide exchange (NEE) at multiple timescales. Experimental data necessary to quantify impacts of a single climate variable, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have been lacking. This derives from an inability of field studies to avoid the confounding effects of natural intra-annual and interannual variability in temperature and precipitation. Here we present results from a four-year study using replicate 12,000-kg intact tallgrass prairie monoliths located in four 184-m(3) enclosed lysimeters. We exposed 6 of 12 monoliths to an anomalously warm year in the second year of the study and continuously quantified rates of ecosystem processes, including NEE. We find that warming decreases NEE in both the extreme year and the following year by inducing drought that suppresses net primary productivity in the extreme year and by stimulating heterotrophic respiration of soil biota in the subsequent year. Our data indicate that two years are required for NEE in the previously warmed experimental ecosystems to recover to levels measured in the control ecosystems. This time lag caused net ecosystem carbon sequestration in previously warmed ecosystems to be decreased threefold over the study period, compared with control ecosystems. Our findings suggest that more frequent anomalously warm years, a possible consequence of increasing anthropogenic carbon dioxide levels, may lead to a sustained decrease in carbon dioxide uptake by terrestrial ecosystems.  相似文献   

7.
Vegetation dynamics could lead to changes in the global carbon and hydrology cycle, as well as feedbacks to climate change. This paper reviews the response of forest dynamics to climate change. Based on palaeoecological studies, we summarized the features and modes of vegetation response to climate change and categorized the impacts of climate change on vegetation dynamics as three types: climate stress on vegetation, buffer effects by non-climatic factors, and perturbation of the vegetation distribution by stochastic events. Due to the openness of the vegetation system and the integrated effects of both climatic and non-climatic factors the vegetation-climate relationship deviates far from its equilibrium. The vegetation distribution shows a non-linear response to climate change, which also makes it difficult to quantify the modern vegetation distribution in terms of specific climatic factors. Past analog, space-for-time-substitution and Dynamic Global Vegetation Models (DGVMs) are three approaches to predicting the future vegetation distribution, but they have all been established on the assumption of vegetation-climate equilibrium. We propose that improving DGVMs is a future task for studies of vegetation dynamics because these are process-based models incorporating both disturbance (e.g. fire) and the variability in Plant Functional Types (PFTs). However, palaeoecological results should be used to test the models, and issues like spatial and temporal scale, complexity of climate change, effects of non-climatic factors, vege- tation-climate feedback, and human regulation on vegetation dynamics are suggested as topics for future studies.  相似文献   

8.
Mountain pine beetle and forest carbon feedback to climate change   总被引:9,自引:0,他引:9  
The mountain pine beetle (Dendroctonus ponderosae Hopkins, Coleoptera: Curculionidae, Scolytinae) is a native insect of the pine forests of western North America, and its populations periodically erupt into large-scale outbreaks. During outbreaks, the resulting widespread tree mortality reduces forest carbon uptake and increases future emissions from the decay of killed trees. The impacts of insects on forest carbon dynamics, however, are generally ignored in large-scale modelling analyses. The current outbreak in British Columbia, Canada, is an order of magnitude larger in area and severity than all previous recorded outbreaks. Here we estimate that the cumulative impact of the beetle outbreak in the affected region during 2000-2020 will be 270 megatonnes (Mt) carbon (or 36 g carbon m(-2) yr(-1) on average over 374,000 km2 of forest). This impact converted the forest from a small net carbon sink to a large net carbon source both during and immediately after the outbreak. In the worst year, the impacts resulting from the beetle outbreak in British Columbia were equivalent to approximately 75% of the average annual direct forest fire emissions from all of Canada during 1959-1999. The resulting reduction in net primary production was of similar magnitude to increases observed during the 1980s and 1990s as a result of global change. Climate change has contributed to the unprecedented extent and severity of this outbreak. Insect outbreaks such as this represent an important mechanism by which climate change may undermine the ability of northern forests to take up and store atmospheric carbon, and such impacts should be accounted for in large-scale modelling analyses.  相似文献   

9.
Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.  相似文献   

10.
【目的】森林在全球碳循环中发挥着重要作用。林火干扰是全球生物地球化学循环的关键驱动因子,影响植被结构变化及森林演替方向,从而对森林生态系统土壤有机碳密度及碳周转产生重要作用,进而影响森林碳循环与碳平衡。笔者定量研究林火干扰对森林生态系统土壤有机碳密度及其活性有机碳的影响,科学阐明林火干扰对森林生态系统土壤有机碳的影响机制,为火烧迹地恢复与森林碳减排增汇提供参考。【方法】以广东省佛冈马尾松林为研究对象,采用相邻样地比较法、化学分析法,在森林生态系统水平上,定量测定不同林火干扰强度对土壤有机碳密度、土壤活性有机碳含量和细根生物量的影响,对林火干扰后土壤有机碳密度的变化进行定量研究,探讨林火干扰对土壤有机碳密度以及活性有机碳的影响机制,深入分析森林生态系统土壤有机碳的循环与分配过程。【结果】林火干扰对马尾松林的土壤有机碳密度、活性有机碳含量和细根生物量均有影响,不同林火干扰强度下土壤有机碳密度与土壤活性有机碳含量变化趋势均表现为对照>轻度林火干扰>中度林火干扰>重度林火干扰。轻度林火干扰对土壤有机碳密度的影响差异不显著(P>0.05),而中度和重度林火干扰则显著降低土壤有机碳密度(P<0.05)。林火干扰的马尾松林土壤细根生物量均低于对照样地,变化趋势为重度林火干扰>中度林火干扰>轻度林火干扰,轻度林火干扰只显著降低土壤表层细根生物量(P<0.05),而中度和重度林火干扰显著降低了土壤表层和浅层细根生物量(P<0.05)。【结论】林火干扰减小了土壤有机碳密度,减少幅度随土壤剖面深度增加而逐渐变小。轻度林火干扰仅显著降低了表层土壤有机碳密度,而中度和重度林火干扰显著降低了土壤表层和浅层土壤有机碳密度,进而导致土壤有机碳密度显著变化。林火干扰对土壤活性有机碳含量产生了影响。林火干扰后马尾松林4种土壤活性有机碳含量均呈下降趋势,但仅中度和重度林火干扰差异显著。活性有机碳含量各组分随林火干扰强度增加沿土壤剖面递减的幅度呈现一定差异,重度林火干扰后的递减趋势最强。此外,林火干扰还降低了马尾松林土壤细根生物量。  相似文献   

11.
Mack MC  Schuur EA  Bret-Harte MS  Shaver GR  Chapin FS 《Nature》2004,431(7007):440-443
Global warming is predicted to be most pronounced at high latitudes, and observational evidence over the past 25 years suggests that this warming is already under way. One-third of the global soil carbon pool is stored in northern latitudes, so there is considerable interest in understanding how the carbon balance of northern ecosystems will respond to climate warming. Observations of controls over plant productivity in tundra and boreal ecosystems have been used to build a conceptual model of response to warming, where warmer soils and increased decomposition of plant litter increase nutrient availability, which, in turn, stimulates plant production and increases ecosystem carbon storage. Here we present the results of a long-term fertilization experiment in Alaskan tundra, in which increased nutrient availability caused a net ecosystem loss of almost 2,000 grams of carbon per square meter over 20 years. We found that annual aboveground plant production doubled during the experiment. Losses of carbon and nitrogen from deep soil layers, however, were substantial and more than offset the increased carbon and nitrogen storage in plant biomass and litter. Our study suggests that projected release of soil nutrients associated with high-latitude warming may further amplify carbon release from soils, causing a net loss of ecosystem carbon and a positive feedback to climate warming.  相似文献   

12.
Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.  相似文献   

13.
Respiration as the main determinant of carbon balance in European forests   总被引:106,自引:0,他引:106  
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha(-1) yr(-1), with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.  相似文献   

14.
Barber VA  Juday GP  Finney BP 《Nature》2000,405(6787):668-673
The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations. From these observations, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes and for the boreal forest system as a whole. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.  相似文献   

15.
综合RS与GIS方法的海南生态环境研究   总被引:1,自引:0,他引:1  
以1987年海南植被类型图,1988年海南省土壤侵蚀图和1987年与1998年的TM遥感资料为信息源,综合应用ERDAS和ARC/INFO软件分析了海南建省前后生态环境的变化情况,并对生态环境现状进行了评价.结果表明,作为本区自然生态环境质量标志的季雨林、雨林面积变化不大,自然生态环境质量由中部山区向外依次降低.人类活动对自然生态环境的影响明显,人工植被大幅度增加,但天然植被面积呈现减少趋势.  相似文献   

16.
Hessler AM  Lowe DR  Jones RL  Bird DK 《Nature》2004,428(6984):736-738
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated the feedback cycle involving organic haze production and global cooling. Climate models have focused on carbon dioxide as the greenhouse gas responsible for maintaining above-freezing surface temperatures during a time of low solar luminosity. However, the analysis of 2.75-billion-year (Gyr)-old palaeosols--soil samples preserved in the geologic record--have recently provided an upper constraint on atmospheric carbon dioxide levels well below that required in most climate models to prevent the Earth's surface from freezing. This finding prompted many to look towards methane as an additional greenhouse gas to satisfy climate models. Here we use model equilibrium reactions for weathering rinds on 3.2-Gyr-old river gravels to show that the presence of iron-rich carbonate relative to common clay minerals requires a minimum partial pressure of carbon dioxide several times higher than present-day values. Unless actual carbon dioxide levels were considerably greater than this, climate models predict that additional greenhouse gases would still need to have a role in maintaining above-freezing surface temperatures.  相似文献   

17.
Net carbon dioxide losses of northern ecosystems in response to autumn warming   总被引:12,自引:0,他引:12  
The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.  相似文献   

18.
Fire science for rainforests   总被引:1,自引:0,他引:1  
Cochrane MA 《Nature》2003,421(6926):913-919
Forest fires are growing in size and frequency across the tropics. Continually eroding fragmented forest edges, they are unintended ecological disturbances that transcend deforestation to degrade vast regions of standing forest, diminishing ecosystem services and the economic potential of these natural resources. Affecting the health of millions, net forest fire emissions may have released carbon equivalent to 41% of worldwide fossil fuel use in 1997-98. Episodically more severe during El Ni?o events, pan-tropical forest fires will increase as more damaged, less fire-resistant, forests cover the landscape. Here I discuss the current state of tropical fire science and make recommendations for advancement.  相似文献   

19.
SI Higgins  S Scheiter 《Nature》2012,488(7410):209-212
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state. Although different types of uncertainty limit our capacity to assess this risk, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system, whether large-scale vegetation systems can tip into alternative states is poorly understood. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.  相似文献   

20.
城市森林具备调节气候、维持大气中氧气和二氧化碳的平衡、净化大气、降低噪音等生态功能。文章以乌鲁木齐市为例,分析了该市的城市森林建设现状及城市森林景观对本市的生态、经济、社会贡献的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号