首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is emerging evidence that people with successfully treated HIV infection age prematurely, leading to progressive multi-organ disease, but the reasons for this are not known. Here we show that patients treated with commonly used nucleoside analog anti-retroviral drugs progressively accumulate somatic mitochondrial DNA (mtDNA) mutations, mirroring those seen much later in life caused by normal aging. Ultra-deep re-sequencing by synthesis, combined with single-cell analyses, suggests that the increase in somatic mutation is not caused by increased mutagenesis but might instead be caused by accelerated mtDNA turnover. This leads to the clonal expansion of preexisting age-related somatic mtDNA mutations and a biochemical defect that can affect up to 10% of cells. These observations add weight to the role of somatic mtDNA mutations in the aging process and raise the specter of progressive iatrogenic mitochondrial genetic disease emerging over the next decade.  相似文献   

2.
A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice   总被引:13,自引:0,他引:13  
The pathophysiologic pathways and clinical expression of mitochondrial DNA (mtDNA) mutations are not well understood. This is mainly the result of the heteroplasmic nature of most pathogenic mtDNA mutations and of the absence of clinically relevant animal models with mtDNA mutations. mtDNA mutations predisposing to hearing impairment in humans are generally homoplasmic, yet some individuals with these mutations have severe hearing loss, whereas their maternal relatives with the identical mtDNA mutation have normal hearing. Epidemiologic, biochemical and genetic data indicate that nuclear genes are often the main determinants of these differences in phenotype. To identify a mouse model for maternally inherited hearing loss, we screened reciprocal backcrosses of three inbred mouse strains, A/J, NOD/LtJ and SKH2/J, with age-related hearing loss (AHL). In the (A/J x CAST/Ei) x A/J backcross, mtDNA derived from the A/J strain exerted a significant detrimental effect on hearing when compared with mtDNA from the CAST/Ei strain. This effect was not seen in the (NOD/LtJ x CAST/Ei) x NOD/LtJ and (SKH2/J x CAST/Ei) x SKH2/J backcrosses. Genotyping revealed that this effect was seen only in mice homozygous for the A/J allele at the Ahl locus on mouse chromosome 10. Sequencing of the mitochondrial genome in the three inbred strains revealed a single nucleotide insertion in the tRNA-Arg gene (mt-Tr) as the probable mediator of the mitochondrial effect. This is the first mouse model with a naturally occurring mtDNA mutation affecting a clinical phenotype, and it provides an experimental model to dissect the pathophysiologic processes connecting mtDNA mutations to hearing loss.  相似文献   

3.
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.  相似文献   

4.
Nuclear genetic control of mitochondrial DNA segregation   总被引:8,自引:0,他引:8  
Mammalian mitochondrial DNA (mtDNA) is a high copy-number, maternally inherited genome that codes for a small number of essential proteins involved in oxidative phosphorylation. Mutations in mtDNA are responsible for a broad spectrum of clinical disorders. The segregation pattern of pathogenic mtDNA mutants is an important determinant of the nature and severity of mitochondrial disease, but it varies with the specific mutation, cell type and nuclear background and generally does not correlate well with mitochondrial dysfunction. To identify nuclear genes that modify the segregation behavior of mtDNA, we used a heteroplasmic mouse model derived from two inbred strains (BALB/c and NZB; ref. 12), in which we had previously demonstrated tissue-specific and age-dependent directional selection for different mtDNA genotypes in the same mouse. Here we show that this phenotype segregates in F2 mice from a genetic cross (BALB/c x CAST/Ei) and that it maps to at least three quantitative-trait loci (QTLs). Genome-wide scans showed linkage of the trait to loci on Chromosomes 2, 5 and 6, accounting for 16-35% of the variance in the trait, depending on the tissue and age of the mouse. This is the first genetic evidence for nuclear control of mammalian mtDNA segregation.  相似文献   

5.
The ability to generate mutations is a prerequisite to functional genetic analysis. Despite a long history of using mice as a model system for genetic analysis, the scientific community has not generated a comprehensive collection of multiple alleles for most mouse genes. The chemical mutagen of choice for mouse has been N-ethyl-N-nitrosourea (ENU), an alkylating agent that mainly causes base substitutions in DNA, and therefore allows for recovery of complete and partial loss-, as well as gain-, of-function alleles . Specific locus tests designed to detect recessive mutations showed that ENU is the most efficient mutagen in mouse with an approximate mutation rate of 1 in 1,000 gametes. In fact, several genome-wide and region-specific screens based on phenotypes have been carried out. The anticipation of the completion of the human and mouse genome projects, however, now emphasizes genotype-driven genetics--from sequence to mutants. To take advantage of the mutagenicity of ENU and its ability to create allelic series of mutations, we have developed a complementary approach to generating mutations using mouse embryonic stem (ES) cells. We show that a high mutation frequency can be achieved and that modulating DNA-repair activities can enhance this frequency. The treated cells retain germline competency, thereby rendering this approach applicable for efficient generation of an allelic series of mutations pivotal to a fine-tuned dissection of biological pathways.  相似文献   

6.
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain and interlocus variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chimaeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives.  相似文献   

7.
8.
The autosomal recessive mouse mutation quivering (qv), which arose spontaneously in 1953, produces progressive ataxia with hind limb paralysis, deafness and tremor. Six additional spontaneous alleles, qvJ, qv2J, qv3J, qv4J, qvlnd and qvlnd2J, have been identified. Ear twitch responses (Preyer's reflex) to sound are absent in homozygous qv/qv mice, although cochlear morphology seems normal and cochlear potentials recorded at the round window are no different from those of control mice. However, responses from brainstem auditory nuclei show abnormal transmission of auditory information, indicating that, in contrast to the many known mutations causing deafness originating in the cochlea, deafness in qv is central in origin. Here we report that quivering mice carry loss-of-function mutations in the mouse beta-spectrin 4 gene (Spnb4) that cause alterations in ion channel localization in myelinated nerves; this provides a rationale for the auditory and motor neuropathies of these mice.  相似文献   

9.
Dynein mutations impair autophagic clearance of aggregate-prone proteins   总被引:11,自引:0,他引:11  
Mutations that affect the dynein motor machinery are sufficient to cause motor neuron disease. It is not known why there are aggregates or inclusions in affected tissues in mice with such mutations and in most forms of human motor neuron disease. Here we identify a new mechanism of inclusion formation by showing that decreased dynein function impairs autophagic clearance of aggregate-prone proteins. We show that mutations of the dynein machinery enhanced the toxicity of the mutation that causes Huntington disease in fly and mouse models. Furthermore, loss of dynein function resulted in premature aggregate formation by mutant huntingtin and increased levels of the autophagosome marker LC3-II in both cell culture and mouse models, compatible with impaired autophagosome-lysosome fusion.  相似文献   

10.
Mice carrying mitochondrial DNA (mtDNA) with pathogenic mutations would provide a system in which to study how mutant mtDNAs are transmitted and distributed in tissues, resulting in expression of mitochondrial diseases. However, no effective procedures are available for the generation of these mice. Isolation of mouse cells without mtDNA (rho0) enabled us to trap mutant mtDNA that had accumulated in somatic tissues into rho0 cells repopulated with mtDNA (cybrids). We isolated respiration-deficient cybrids with mtDNA carrying a deletion and introduced this mtDNA into fertilized eggs. The mutant mtDNA was transmitted maternally, and its accumulation induced mitochondrial dysfunction in various tissues. Moreover, most of these mice died because of renal failure, suggesting the involvement of mtDNA mutations in the pathogeneses of new diseases.  相似文献   

11.
DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families.  相似文献   

12.
Specific homeostatic mechanisms confer stability in innate immune responses, preventing injury or death from infection. Here we identify, from a screen of N-ethyl-N-nitrosourea-mutagenized mice, a mutation causing both profound susceptibility to infection by mouse cytomegalovirus and approximately 20,000-fold sensitization to lipopolysaccharide (LPS), poly(I.C) and immunostimulatory (CpG) DNA. The LPS hypersensitivity phenotype is not suppressed by mutations in Myd88, Trif, Tnf, Tnfrsf1a, Ifnb, Ifng or Stat1, genes contributing to LPS responses, and results from an abnormality extrinsic to hematopoietic cells. The phenotype is due to a null allele of Kcnj8, encoding Kir6.1, a protein that combines with SUR2 to form an ATP-sensitive potassium channel (K(ATP)) expressed in coronary artery smooth muscle and endothelial cells. In Drosophila melanogaster, suppression of dSUR by RNA interference similarly causes hypersensitivity to infection by flock house virus. Thus, K(ATP) evolved to serve a homeostatic function during infection, and in mammals it prevents coronary artery vasoconstriction induced by cytokines dependent on TLR and/or MDA5 immunoreceptors.  相似文献   

13.
To determine whether human X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome (IPEX; MIM 304930) is the genetic equivalent of the scurfy (sf) mouse, we sequenced the human ortholog (FOXP3) of the gene mutated in scurfy mice (Foxp3), in IPEX patients. We found four non-polymorphic mutations. Each mutation affects the forkhead/winged-helix domain of the scurfin protein, indicating that the mutations may disrupt critical DNA interactions.  相似文献   

14.
A missense mutation in Tbce causes progressive motor neuronopathy in mice   总被引:1,自引:0,他引:1  
Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.  相似文献   

15.
Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.  相似文献   

16.
17.
18.
Cardiac defects and renal failure in mice with targeted mutations in Pkd2   总被引:13,自引:0,他引:13  
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.  相似文献   

19.
Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.  相似文献   

20.
Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号