首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem. However, our understanding of the molecular interaction of such flaviviruses with mammalian host cells is limited. WNV encodes only 10 proteins, implying that it may use many cellular proteins for infection. WNV enters the cytoplasm through pH-dependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway. RNA interference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions. Here we report the identification of 305 host proteins that affect WNV infection, using a human-genome-wide RNAi screen. Functional clustering of the genes revealed a complex dependence of this virus on host cell physiology, requiring a wide variety of molecules and cellular pathways for successful infection. We further demonstrate a requirement for the ubiquitin ligase CBLL1 in WNV internalization, a post-entry role for the endoplasmic-reticulum-associated degradation pathway in viral infection, and the monocarboxylic acid transporter MCT4 as a viral replication resistance factor. By extending this study to dengue virus, we show that flaviviruses have both overlapping and unique interaction strategies with host cells. This study provides a comprehensive molecular portrait of WNV-human cell interactions that forms a model for understanding single plus-stranded RNA virus infection, and reveals potential antiviral targets.  相似文献   

2.
寨卡病毒(Zika Virus)属于黄病毒科中的黄病毒属,虽然很早就已经被人类所发现,但是一直到2015年在南美巴西的大规模爆发,才引起了广泛的关注.寨卡病毒对人类的感染往往引起包括小头畸形和格林-巴利综合征在内的多种症状.寨卡病毒的基因组为单链正链RNA,其基因组可以编码翻译并剪切加工出3个结构蛋白,分别为膜蛋白,囊膜蛋白和核衣壳蛋白,以及7个非结构蛋白(NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).相关研究已经证明,NS1蛋白与同属黄病毒属的登革病毒的发病有紧密的联系,而且根据其蛋白结构推测其可能与寨卡病毒穿越血脑屏障有关.因此鉴别NS1与细胞内的相互作用蛋白对于发现寨卡病毒在细胞内的转运,转录,以及装配都有重大的意义.在此,该课题构建并在HEK293细胞中表达包含Flag和Strep两种标签的NS1融合蛋白,通过免疫沉淀的方法将与NS1结合的蛋白利用标签蛋白进行分离,利用高分辨生物质谱技术,对蛋白进行分析鉴定.通过分别带有Flag与Strep标签的相互作用蛋白分析,发现了16个两种标签共同的结合蛋白,其进一步的通路分析证明这些蛋白于与病毒转录、病毒复制和免疫反应多个通路有关,相关的研究结果为今后进一步研究寨卡病毒的复制机制以及开发抗病毒药物提供了重要的参考价值.  相似文献   

3.
W Hammerschmidt  B Sugden 《Nature》1989,340(6232):393-397
Epstein-Barr virus (EBV), a herpes virus, infects human B lymphocytes in vitro and efficiently immortalizes them. About 10 of the approximately 100 genes of EBV are expressed in recently immortalized B cells and although there is circumstantial evidence that at least three of these may contribute to the process of immortalization, there is no direct evidence that any particular gene is required. We have developed a genetic analysis of EBV that uses a transformation-defective strain of the virus as a helper virus in conjunction with DNA that contains all of the viral cis-acting elements required for replication, cleavage and packaging during the lytic phase of the viral life cycle. This DNA can include viral genes required for immortalization that complement the transformation-defective virus strain. The DNA can be amplified and packaged by the products of the helper virus and the packaged DNA is infectious. We have analysed two viral genes expressed in immortalized cells and find that the gene encoding EBV nuclear antigen-2 is required for immortalization, whereas the gene for the EBV nuclear antigen leader protein is not.  相似文献   

4.
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.  相似文献   

5.
D Wilcock  D P Lane 《Nature》1991,349(6308):429-431
Replication of DNA occurs at discrete sites in eukaryotic cell nuclei, where replication proteins are clustered into large complexes, or 'replicases'. Similarly, viral DNA replication is a highly structured process, notably in herpes simplex virus type-1 (HSV-1; reviewed in ref. 4) in which large globular 'replication compartments' containing the viral replication machinery exist. Replicating cellular DNA redistributes to these compartments upon HSV-1 infection. We have now used antibodies raised against several cellular proteins to detect changes in their subnuclear localization on HSV-1 infection. We found that various proteins involved in cellular DNA replication move to sites of viral DNA synthesis, whereas a selection of non-replication proteins do not. The retinoblastoma protein and p53 (the products of two putative anti-oncogenes) relocate to the same sites as known DNA replication proteins, suggesting that they may be associated with DNA replication complexes in normal, uninfected cells.  相似文献   

6.
Potent virus-specific cytotoxic T lymphocyte (CTL) responses elicited by candidate AIDS vaccines have recently been shown to control viral replication and prevent clinical disease progression after pathogenic viral challenges in rhesus monkeys. Here we show that viral escape from CTL recognition can result in the eventual failure of this partial immune protection. Viral mutations that escape from CTL recognition have been previously described in humans infected with human immunodeficiency virus (HIV) and monkeys infected with simian immunodeficiency virus (SIV). In a cohort of rhesus monkeys that were vaccinated and subsequently infected with a pathogenic hybrid simian-human immunodeficiency virus (SHIV), the frequency of viral sequence mutations within CTL epitopes correlated with the level of viral replication. A single nucleotide mutation within an immunodominant Gag CTL epitope in an animal with undetectable plasma viral RNA resulted in viral escape from CTLs, a burst of viral replication, clinical disease progression, and death from AIDS-related complications. These data indicate that viral escape from CTL recognition may be a major limitation of the CTL-based AIDS vaccines that are likely to be administered to large human populations over the next several years.  相似文献   

7.
S W Gollins  J S Porterfield 《Nature》1986,321(6067):244-246
Despite the considerable research that has been carried out into viral neutralization by antiviral antibody, its mechanisms remain poorly understood. Cases have been reported in which antiviral antibody can inhibit viral replication without inhibiting the binding and uptake of virus by susceptible cells. It has been shown that many enveloped viruses enter their target cells by endocytosis and are subsequently located in cellular compartments of increasing acidity. With several enveloped viruses this acidic pH can catalyse a fusion reaction between the membrane of the virus particle and that of a prelysosomal endosome, thus enabling the viral core to enter the cytosol and replication to commence. We have recently demonstrated that such an endosomal fusion event at mild acidic pH is involved in the entry pathway of the enveloped flavivirus, West Nile virus (WNV), into macrophages. We now show that antiviral antibody can neutralize WNV by inhibiting this intraendosomal acid-catalysed fusion step and we speculate on possible implications for the future design of antiviral vaccines.  相似文献   

8.
Activation of BPV-1 replication in vitro by the transcription factor E2.   总被引:53,自引:0,他引:53  
L Yang  R Li  I J Mohr  R Clark  M R Botchan 《Nature》1991,353(6345):628-632
  相似文献   

9.
A H Sharpe  J J Hunter  P Chassler  R Jaenisch 《Nature》1990,346(6280):181-183
  相似文献   

10.
11.
Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex   总被引:23,自引:0,他引:23  
Stracker TH  Carson CT  Weitzman MD 《Nature》2002,418(6895):348-352
In mammalian cells, a conserved multiprotein complex of Mre11, Rad50 and NBS1 (also known as nibrin and p95) is important for double-strand break repair, meiotic recombination and telomere maintenance. This complex forms nuclear foci and may be a sensor of double-strand breaks. In the absence of the early region E4, the double-stranded DNA genome of adenovirus is joined into concatemers too large to be packaged. We have investigated the cellular proteins involved in this concatemer formation and how they are inactivated by E4 products during a wild-type infection. Here we show that concatemerization requires functional Mre11 and NBS1, and that these proteins are found at foci adjacent to viral replication centres. Infection with wild-type virus results in both reorganization and degradation of members of the Mre11-Rad50-NBS1 complex. These activities are mediated by three viral oncoproteins that prevent concatemerization. This targeting of cellular proteins involved in genomic stability suggests a mechanism for 'hit-and-run' transformation observed for these viral oncoproteins.  相似文献   

12.
本文通过细胞表面病毒受体分析,病毒感染细胞的电镜观察以及细胞核和细胞质可溶性蛋白组分的电泳分析,对AHZC-88细胞的抗病毒机制进行了初步的探讨。结果表明,病毒不仅能与该细胞表面结合,而且能够进入细胞,但是不能在细胞内复制增殖。电泳分析显示该细胞的胞质可溶性蛋白组分比对病毒敏感的ZC—7901细胞多了一条区带。这些结果提示AHZC-88细胞对病毒的抗性可能是由于病毒在细胞内的脱衣壳过程受到了抑制所致。  相似文献   

13.
Bombyx mori bidensovirus (BmBDV), which had been assigned to Densovirinae in Parvoviridae previously, replicates mainly in silkworm midgut columnar cells and causes the fatal flacheric disease. In contrast to parvovirus, this virus possesses two single-stranded DNA genome segments and encodes a putative protein-primed DNA polymerase. The accumulating evidence sug- gests that it has unique characteristics different to parvovirus and adopts its own mechanisms for replication. So far, little is known about the replication mechanisms of BmBDV. In this review, we focus on the pathology associated with this virus and the viral biology such as viral genome structure, viral genes, and viral replication and expression strategies.  相似文献   

14.
Polyoma middle-T antigen is required for viral transformation of cultured cells and for tumorigenesis in animals. Like many other transforming gene products, middle-T is bound to the membrane and has an associated tyrosine kinase activity in vitro. This activity seems to result from the interaction of middle-T with pp60c-src, the cellular homologue of the transforming gene product of the Rous sarcoma virus, pp60v-src (refs 3-5). Both pp60v-src (ref. 6) and another retrovirus transforming gene product, pp68v-ros (ref. 7) were shown recently to have an associated phosphatidylinositol (PI) kinase activity in vitro and to increase PI turnover in vivo. These results suggest that viral transformation may be directly connected to a complex network of second messengers generated from PI turnover. Here, we assayed for PI kinase activity in immunoprecipitates made with middle-T- or pp60c-src-specific antisera of cells infected with polyoma virus. A PI kinase activity was detected in those immunoprecipitates which contained middle-T. Studies of mutants of middle-T defective in transformation indicate a close correlation between PI kinase activity and transformation.  相似文献   

15.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

16.
目的:研究Nef PKA磷酸化位点对HIV复制的影响。方法:在全长HIVNL4-3中,通过将Nef Ser9突变为丙氨酸,构建一个单突变HIV DNA。接着用野生型HIV或单突变型HIV产生病毒,然后用病毒去感染外周血单核细胞(PBMC)。结果:与亲代病毒比较,单突变Ser9为丙氨酸的病毒下调了HIV在静息PBMC中的复制。结论 :该突变在消除静息原代细胞中Nef对HIV复制的影响起重要作用。研究结果显示,PKA对Nef磷酸化是静息细胞中病毒生命周期的重要步骤。  相似文献   

17.
 综述了SARS病毒、登革热病毒、流感病毒、呼吸道合胞病毒流行与气候的关系,认为病毒产生于一定的自然条件和环境,特定的气候因素是病毒流行的推手,相同的气候更有利于病毒的流行。超出域值之外,气候因素则会限制甚至阻断病毒传播。探讨了不同气候因素的作用,可完善病毒性疾病的预警机制,有助于对可能产生的疫病暴发提前做好防治准备。  相似文献   

18.
HIV chemotherapy   总被引:13,自引:0,他引:13  
Richman DD 《Nature》2001,410(6831):995-1001
The use of chemotherapy to suppress replication of the human immunodeficiency virus (HIV) has transformed the face of AIDS in the developed world. Pronounced reductions in illness and death have been achieved and healthcare utilization has diminished. HIV therapy has also provided many new insights into the pathogenesis and the viral and cellular dynamics of HIV infection. But challenges remain. Treatment does not suppress HIV replication in all patients, and the emergence of drug-resistant virus hinders subsequent treatment. Chronic therapy can also result in toxicity. These challenges prompt the search for new drugs and new therapeutic strategies to control chronic viral replication.  相似文献   

19.
 综述了SARS病毒、登革热病毒、流感病毒、呼吸道合胞病毒流行与气候的关系,认为病毒产生于一定的自然条件和环境,特定的气候因素是病毒流行的推手,相同的气候更有利于病毒的流行。超出域值之外,气候因素则会限制甚至阻断病毒传播。探讨了不同气候因素的作用,可完善病毒性疾病的预警机制,有助于对可能产生的疫病暴发提前做好防治准备。  相似文献   

20.
Architecture of ribonucleoprotein complexes in influenza A virus particles   总被引:1,自引:0,他引:1  
Noda T  Sagara H  Yen A  Takada A  Kida H  Cheng RH  Kawaoka Y 《Nature》2006,439(7075):490-492
In viruses, as in eukaryotes, elaborate mechanisms have evolved to protect the genome and to ensure its timely replication and reliable transmission to progeny. Influenza A viruses are enveloped, spherical or filamentous structures, ranging from 80 to 120 nm in diameter. Inside each envelope is a viral genome consisting of eight single-stranded negative-sense RNA segments of 890 to 2,341 nucleotides each. These segments are associated with nucleoprotein and three polymerase subunits, designated PA, PB1 and PB2; the resultant ribonucleoprotein complexes (RNPs) resemble a twisted rod (10-15 nm in width and 30-120 nm in length) that is folded back and coiled on itself. Late in viral infection, newly synthesized RNPs are transported from the nucleus to the plasma membrane, where they are incorporated into progeny virions capable of infecting other cells. Here we show, by transmission electron microscopy of serially sectioned virions, that the RNPs of influenza A virus are organized in a distinct pattern (seven segments of different lengths surrounding a central segment). The individual RNPs are suspended from the interior of the viral envelope at the distal end of the budding virion and are oriented perpendicular to the budding tip. This finding argues against random incorporation of RNPs into virions, supporting instead a model in which each segment contains specific incorporation signals that enable the RNPs to be recruited and packaged as a complete set. A selective mechanism of RNP incorporation into virions and the unique organization of the eight RNP segments may be crucial to maintaining the integrity of the viral genome during repeated cycles of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号