首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H·P·Kramer在文[11]中研究了谱算子的无界微扰。其主要之微扰定理的条件中假设,而由于有这个条件,便不能如原文那样将微扰定理应用于由偶数阶形式微分算子τ=d~(2μ)/dx~(2μ)及Sturm型边界条件所产生的微分算子上,关于这一点我们可以举出反例。  相似文献   

2.
非线性hammerstein型积分方程的多重解及其应用   总被引:1,自引:0,他引:1  
在讨论非线性Hammerstein型积分方程(*)φ(x)=integral from n=G to k(x,y)f(y,φ(y))dy,0相似文献   

3.
在Banach空间X中考察:??其中f_0=f g,f满足非紧型条件,g满足耗散型条件(见下文).由于实际问题(如中子迁移)的需要,产生了微分积分方程理论,而方程(1)正以微分积分方程为其典型背景之一.本文从研究非紧型算子对耗散型算子的摄动理论入手,首先得到了上述两种算子间的一个关系.然后,利用这一结果进一步研究了问题(1)、(2)以及(1)的周期解;在一致连续性(关于f和g)方面,推广和改善了[2]、[3]、[4]、[8]、[10]中的若干结果.特别地,我们证明了[3]中定理4对g一致连续性的要求是多余的.最后证明了一个不动点定理.  相似文献   

4.
研究了一类带有p-Laplacian算子的分数阶微分方程反周期边值问题{(Cφp Dα0+u(t))=f(t,u(t)),t∈[0,T],u(0)=-u(T),u′(0)=-u′(T)解的存在性,其中1α≤2,T0,φp(s)=s p-1s,p1,(φp)-1=φq,p-1+q-1=1,CDα0+为Caputo分数阶微分,f:[0,T]×R→R为连续函数.利用分数阶微分方程和反周期边值条件的特性给出所研究边值问题的Green’s函数,然后借助于Banach压缩映像原理和Krasnosel’skiis不动点定理得到此反周期边值问题解的一些新的存在性理论.作为应用,给出了2个例子验证了所得结果.  相似文献   

5.
利用锥不动点定理给出下面非线性分数阶微分方程边值问题{Dα0+u(t)=f(t,u(t)),0相似文献   

6.
研究了一类分数阶微分方程的边值问题:{Dα0+u(t)+f(u(t))=0,u(0)=0,u(1)=0,其中α(1α2)是实数,Dα0+是标准的Riemann-Liouville微分,f:[0,+∞)→[0,+∞)连续,t∈[0,1].利用范数形式的锥拉伸与锥压缩不动点定理,在满足适当的条件下,证明了该边值问题正解的存在性.  相似文献   

7.
在微分算式l(y)=y^(4)-(py′)′ qy(t∈[α,∞))满足l^k(y)(k=1,2)均为极限点型条件下,该文运用Calkin定理及微分算子自伴扩张理论,以边界条件形式研究了由l(y)生成的2个微分算子积的自伴边值问题,并获得其自伴的充分必要条件,其结果对微分算子理论的研究是有益的。  相似文献   

8.
应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t)) e(t), t∈(0,1)αx(0)-βx′(0)=∑m-2i=1aix(ξi), γx(1) δx′(1)=∑n-2j=1bjx(τj)解的存在性,其中f:[0,1]×R2R满足Caratheodory条件,e(·)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.  相似文献   

9.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

10.
考虑一类带有非线性边界条件的四阶微分边值问题{u(4)(t)=f(t,u(t)),t∈(0,1),u(0)=u″(0)=u?(1)=0,u'(1)+C(u(1))u(1)=0,其中f:[0,1]×R→[0,∞)满足L1-Carathéodory条件,C:[0,∞)→[0,∞)连续.通过对该问题格林函数性质的分析,运用L...  相似文献   

11.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

12.
文[1]的定理1是[1],[2]的立论基础,它是文“Grace定理的一个推广”(见《高等数学》,2:1(1986)中的一个结果。而定理1是不成立的,有反例如下:f(x)=e~z,a=0,b=2πi,则f(z)是复平面上的初等解析函数,虽然f(0)=f(2πi)=1,但对复平面上任何一点z,都有(e~z)′=e~z≠0。文[1]引理1也是不成立的,令F(z)=e~z-1,a=0,b=2πi,n=0,即可明了。不仅如此,即使在实轴上定义的可微函数,只要其值域超出了实数系,中值定理便不再  相似文献   

13.
运用Leray-Schauder非线性抉择定理研究了一类无穷区间上含有p Laplacian算子的n阶微分方程积分边值问题:﹛(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0t+∞,x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,t→+∞lim x(n-1)(t)=0解的存在性,其中η∈[0,+∞),α∈[0,+∞)且f∈C([0,+∞)×R×R,[0,+∞))。  相似文献   

14.
文[1]的作者利用他在[2]中的一个结果,对于L_N~P(R~n)=L~p(R~n)( )…( )L~p(R~n)上的一类椭圆伪微分算子建立了Fiedholm定理。本文将[1]中结果推广到L_l~p2(R~n)空间上,得到了L_l~p2(R~n)上一类椭圆伪微分算子的Fiedholm定理。 我们首先对使用的符号和概念作必需的说明。  相似文献   

15.
运用单调迭代方法讨论带有积分边界条件的非线性二阶常微分方程边值问题{u"(t)+f(t,u(t))=0,t∈(0,1),u(0)=∫10u(s)g(s)ds,u(1)=0}正解的存在性.其中g∈L1[0,1]为非负函数,∫10(1-s)g(s)ds<1,且f∈C([0,1]×R+,R+).  相似文献   

16.
本文利用满足边界条件的积分算子,建立了二阶椭圆型复方程 W q_1(Z)W q_2(Z)W_(zz) q_3(Z)_(zz) q_4(Z) h(Z,W,W,W_z)=0在边界条件 W~ (τ)=G(τ) W~-(τ) =g(τ) , τL Re[t~(-n)W]=γ(t),n>0,tΓ之下的广义解的表示定理与存在性定理。  相似文献   

17.
通过锥不动点定理,给出非线性分数阶微分方程边值问题Da0+u(t)+ f(t,u(t))=0,0<t<1 u(0)=u(1)=u’(0)=0 的正解存在性,其中2<a≤3为实数,f:[0,1]× [0,+∞)→[0,+∞)是连续的,Da0+是一个标准的Rieman-Liouvile微分.  相似文献   

18.
研究了一类具有中间亏指数(m,m)的奇异对称常微分算子谱的性质.通过微分算子自共轭域的结构分析,证明了若对任何λ∈(μ1,μ2),方程τy=λy存在m个线性无关的L2-解.则由τ生成的最小算子T0的任何自共扩张A的特征值在区间(μ1,μ2)中是无处稠密的.  相似文献   

19.
研究Rn中脉冲依赖状态的半线性发展方程初值问题u′(t)+Au(t)=f(t,u(t))a.e.t∈J=[0,a],t≠τk(u(t)),k=1,2,…,m;u(t+)=Ik(u(t)),t=τk(u(t)),k=1,2,…,m;u(0)=u0解的存在性.其中-A生成Rn的等度连续C0-算子半群的生成元.在f满足较弱的L1-Caratheodory条件下,逐段使用Schaefer不动点定理获得其mild解的存在性结果.  相似文献   

20.
设 f(x)为[0,∞)上的函数.所谓 Szász-Mirakyan 算子是:S_a(f,x)=e~(-nx) sum from k=0 to ∞ f(k/n) (nx)~k/k! (1)在[1]中,O·Szász 得到定理 A 设 f(x)在[0,∞)的任一子区间上有界,且存在 m∈N  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号