首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When recombinant and cellular prion protein (PrP(C)) binds copper, it acquires properties resembling the scrapie isoform (PrP(Sc)), namely protease resistance, detergent insolubility and increased beta sheet content. However, whether the conformations of PrP(C) induced by copper and PrP(Sc) are similar has not been studied in great detail. Here, we use a panel of seven monoclonal antibodies to decipher the epitopes on full-length mouse PrP(C) that are affected by exogenous copper, and to compare the antigenicity of the copper-treated full-length PrP(C) with the full-length PrP(Sc) present in scrapie-infected mouse brains. In the presence of copper, we found that epitopes along residues 115-130 and 153-165 become more accessible on PrP(C). These regions correspond to the two beta sheet strands in recombinant PrP and they were proposed to be important for prion conversion. However, when we compared the antibody-binding patterns between full-length PrP(C) with full-length PrP(Sc) and between copper-treated full-length PrP(C) with full-length PrP(Sc), antibody binding to residues 143-155 and 175-185 was consistently increased on PrP(Sc). Collectively, our results suggest that copper-treated full-length PrP(C) does not resemble full-length PrP(Sc), despite acquiring PrP(Sc)-like properties. In addition, since each full-length protein reacts distinctively to some of the antibodies, this binding pattern could discriminate between PrP(C) and PrP(Sc).  相似文献   

2.
Because expressed at a significant level at the membrane of human T cells, we made the hypothesis that the cellular prion protein (PrPc) could behave as a receptor, and be responsible for signal transduction. PrPc engagement by specific antibodies was observed to induce an increase in cytosolic calcium concentration and led to enhanced activity of Src protein tyrosine kinases. Antibodies to CD4 and CD59 did not influence calcium fluxes or signaling. The effect was maximal after the formation of a network involving avidin and biotinylated antibody to PrPc and was inhibited after raft disruption. PrPc localization was not restricted to rafts in resting cells but engagement was a prerequisite for signaling induction, with concomitant PrPc recruitment into rafts. These results suggest a role for PrPc in signaling pathways, and show that lateral redistribution of the protein into rafts is important for subsequent signal transduction.Received 22 July 2004; received after revision 10 September 2004; accepted 7 October 2004  相似文献   

3.
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.  相似文献   

4.
We investigated the effects of ischemia duration on the functional response of mitochondria to reperfusion and its relationship with changes in mitochondrial susceptibility to oxidative stress. Mitochondria were isolated from hearts perfused by the Langendorff technique immediately after different periods of global ischemia or reperfusion following such ischemia periods. Rates of O2 consumption and H2O2 release with complex I- and complex II-linked substrates, lipid peroxidation, overall antioxidant capacity, capacity to remove H2O2, and susceptibility to oxidative stress were determined. The effects of ischemia on some parameters were time dependent so that the changes were greater after 45 than after 20 min of ischemia, or were significantly different to the nonischemic control only after 45 min of ischemia. Thus, succinate-supported state 3 respiration exhibited a significant decrease after 20 min of ischemia and a greater decrease after 45 min, while pyruvate malate-supported respiration showed a significant decrease only after 45 min of ischemia, indicating an ischemia-induced early inhibition of complex II and a late inhibition of complex I. Furthermore, both succinate and pyruvate malate-supported H2O2 release showed significant increases only after 45 min of ischemia. Similarly, whole antioxidant capacity significantly increased and susceptibility to oxidants significantly decreased after 45 min of ischemia. Such changes were likely due to the accumulation of reducing equivalents, which are able to remove peroxides and maintain thiols in a reduced state. This condition, which protects mitochondria against oxidants, increases mitochondrial production of oxyradicals and oxidative damage during reperfusion. This could explain the smaller functional recovery of the tissue and the further decline of the mitochondrial function after reperfusion following the longer period of oxygen deprivation. Received 18 May 2001; received after revision 17 July 2001; accepted 24 July 2001  相似文献   

5.
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.  相似文献   

6.
We previously reported that treatment with P-glycoprotein (P-gp) substrates promotes in vitro invasion in multidrug-resistant (MDR) breast cancer cells. This effect is initiated by the P-gp pump function and mediated by interaction of P-gp with some unknown component(s). However, the underlying mechanism(s) remains poorly understood. Here we confirm a novel physical interaction between P-gp and cellular prion protein (PrPc). Blocking P-gp activity or depletion of PrPc inhibited paclitaxel (P-gp substrate)- induced invasion. Paclitaxel further facilitated the formation of P-gp/PrPc clusters residing in caveolar domains and promoted the association of P-gp with caveolin-1. Both caveolin-1 and the integrity of caveolae were required for the drug-induced invasion. In addition, the P-gp/PrPc complex also played an important role in anti-apoptotic activity of MCF7/Adr cells.These data provide new insights into the mode by which MDR breast cancers evade cytotoxic attacks from P-gp substrates and also suggest a role for P-gp/ PrPc interaction in this process. Received 4 September 2008; received after revision 16 November 2008; accepted 18 November 2008  相似文献   

7.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrPC), its conformational conversion, aggregation and precipitation. We recently proposed that PrPC serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrPC, which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrPC and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrPC, and that allosteric dysfunction of PrPC has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrPC, as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.  相似文献   

8.
Oxidative stress is one of the earliest events of Alzheimer disease (AD), with implications as an important mediator in the onset, progression and pathogenesis of the disease. The generation of reactive oxygen species (ROS) and its consequent cellular damage/response contributes to much of the hallmark AD pathology seen in susceptible neurons. The sources of ROS-mediated damage appear to be multi-faceted in AD, with interactions between abnormal mitochondria, redox transition metals, and other factors. In this review, we provide an overview of these potential causes of oxidative stress in AD.  相似文献   

9.
Résumé Une souche de mouches résistant au dichlorodiphényl-trichloroéthane fut trouvée plus susceptible à l'ingestion de bromure de potassium qu'une souche de mouches normales. Il s'agit là évidemment d'une caractéristique spécifique de cette souche, étant donné que l'on n'a pas pu observer une suceptibilité plus élevée vis-à-vis du bromure de potassium chez des souches résistant à d'autres insecticides.  相似文献   

10.
11.
The purpose of this review is to explore immune-mediated mechanisms of stress surveillance in cancer, with particular emphasis on the idea that all cancers have classical hallmarks (Hanahan and Weinberg in Cell 100:57–70, 67; Cell 144:646–674, 68) that could be interrelated. We postulate that hallmarks of cancer associated with cellular stress pathways (Luo et al. in Cell 136:823–837, 101) including oxidative stress, proteotoxic stress, mitotic stress, DNA damage, and metabolic stress could define and modulate the inflammatory component of cancer. As such, the overarching goal of this review is to define the types of cellular stress that cancer cells undergo, and then to explore mechanisms by which immune cells recognize, respond to, and are affected by each stress response.  相似文献   

12.
13.
Primary neurons undergo insult-dependent programmed cell death. We examined autophagy as a process contributing to cell death in cortical neurons after treatment with either hydrogen peroxide (H2O2) or staurosporine. Although caspase-9 activation and cleavage of procaspase-3 were significant following staurosporine treatment, neither was observed following H2O2 treatment, indicating a non-apoptotic death. Autophagic activity increased rapidly with H2O2, but slowly with staurosporine, as quantified by processing of endogenous LC3. Autophagic induction by both stressors increased the abundance of fluorescent puncta formed by GFP-LC3, which could be blocked by 3-methyladenine. Significantly, such inhibition of autophagy blocked cell death induced by H2O2 but not staurosporine. Suppression of Atg7 inhibited cell death by H2O2, but not staurosporine, whereas suppression of Beclin 1 prevented cell death by both treatments, suggesting it has a complex role regulating both apoptosis and autophagy. We conclude that autophagic mechanisms are activated in an insult-dependent manner and that H2O2 induces autophagic cell death.  相似文献   

14.
15.
Zusammenfassung Bordetella pertussis hat zwei Komponenten, eine mit derselben Wirkung wie Endotoxin vonSalmonella typhosa mit sofortiger kältesensibilisierender Wirkung, die andere mit einer um 5 Tage verspäteten Sensibilisierung. Beide Komponenten können hypoglykämisch wirken.

This work was supported in part by Public Health Service Research Grant No. CC00223 from the Center for Disease Control, Atlanta, Georgia, through the Massachusetts Health Research Institute.  相似文献   

16.
17.
18.
Chromatographic purification by "DEAE" cellulose resolves the cAMP binding proteins in human lymphocytes into three parts. In presence of Mg++ each one possesses cAMP dependent protein-kinase activity, one of them showing allosteric characteristics.  相似文献   

19.
We compare in vitro, the cellular affinity of different proteic membranes in terms of their isoelectric point. This parameter reveals some electric charge oppositions among these materials and, in our experimental conditions, it seems to have no influence on their biocompatibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号